Open Access
Issue |
Acta Acust.
Volume 4, Number 1, 2020
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 17 | |
Section | Room Acoustics | |
DOI | https://doi.org/10.1051/aacus/2020001 | |
Published online | 28 February 2020 |
- Acoustics – Measurement of the reverberation time of rooms with reference to other acoustical parameters, ISO 3382-2:2008/AC – Reverberation time in ordinary rooms. International Organization for Standardization, Geneva, 2009. [Google Scholar]
- F.A. Everest: Reverberation, in Master Handbook of Acoustics, Chap. 11, New York, NY, McGraw-Hill. 2009, 151–179. [Google Scholar]
- H. Kuttruff: Measuring techniques in room acoustics, in Room Acoustics, Chap. 8, Oxford, Spon Press. 2009, pp. 251–293. [Google Scholar]
- P.A. Naylor, N.D. Gaubitch, Editors: Speech dereverberation using statistical reverberation models, in Speech Dereverberation, Chap. 3, Berlin, Springer. 2010, pp. 57–94. [Google Scholar]
- I.J. Tashev: De-reverberation, in Sound Capture and Processing: Practical Approaches, Chap. 8, NY, USA, Wiley. 2009, pp. 341–358. [CrossRef] [Google Scholar]
- H.W. Löllmann, P. Vary: Low delay noise reduction and dereverberation for hearing aids. EURASIP Journal on Advances in Signal Processing 2009 (2009) 1–9. [Google Scholar]
- J. Eaton, N.D. Gaubitch, A.H. Moore, P.A. Naylor: Estimation of room acoustic parameters: The ACE Challenge. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24 (2016) 1681–1693. [Google Scholar]
- R. Ratnam, D.L. Jones, B.C. Wheeler, W.D. O’Brien, C.R. Lansing, A.S. Feng: Blind estimation of reverberation time. Journal of the Acoustical Society of America 114 (2003) 2877–2892. [CrossRef] [Google Scholar]
- R. Ratnam, D.L. Jones, W.D. O’Brien: Fast algorithms for blind estimation of reverberation time. IEEE Signal Processing Letters 11 (2004) 537–540. [Google Scholar]
- P. Kendrick, F.F. Li, T.J. Cox: Blind estimation of reverberation parameters for non-diffuse rooms. Journal of the Acoustical Society of America 93 (2007) 760–770. [Google Scholar]
- H.W. Löllmann, E. Yilmaz, M. Jeub, P. Vary: An improved algorithm for blind reverberation time estimation, in Proceedings of the International Workshop on Acoustic Echo and Noise Control (IWAENC), Israel, Tel Aviv. 2010, pp. 1–4. [Google Scholar]
- P. Kendrick: Blind estimation of room acoustic parameters from speech and music signals. PhD dissertation, University of Salford, UK, 2009. [Google Scholar]
- P. Kendrick, T.J. Cox, F. Li, Y. Zhang, J. Chambers: Monaural room acoustic parameters from music and speech. Journal of the Acoustical Society of America 124 (2008) 278–287. [CrossRef] [Google Scholar]
- T. Jan, W. Wang: Blind reverberation time estimation based on Laplace distribution, in Proc. 20th European Signal Processing Conference (EUSIPCO 2012), Bucharest, Romania. 2012, pp. 2050–2054. [Google Scholar]
- A. Keshavarz, S. Mosayyebpuor, M. Biguesh, T.A. Gulliver, M. Esmaeili: Speech-model based accurate blind reverberation time estimation using an LPC filter. IEEE/ACM Transactions on Audio, Speech, and Language Processing 20 (2012) 1884–1893. [Google Scholar]
- C. Schuldt, P. Handel: Blind low-complexity estimation of reverberation time, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New York, USA. 2013, pp. 1–4. [Google Scholar]
- J.Y.C. Wen, E.A.P. Habets, P.A. Naylor: Blind estimation of reverberation time based on the distribution of signal decay rates, in Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA. 2008, pp. 329–332. [Google Scholar]
- J. Eaton, N.D. Gaubitch, P.A. Naylor: Noise-robust reverberation time estimation using spectral decay distributions with reduced computational cost, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada. 2013, pp. 161–165. [Google Scholar]
- N. Lopez, Y. Grenier, G. Richard, I. Bourmeyster: Low variance blind estimation of the reverberation time, in Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), Aachen, Germany. 2012, pp. 1–4. [Google Scholar]
- T.M. Prego, A.A. Lima, S.L. Netto: A blind algorithm for reverberation-time estimation using subband decomposition of speech signals. Journal of the Acoustical Society of America 131 (2012) 2811–2816. [CrossRef] [Google Scholar]
- T.M. de Prego, A.A. de Lima, R. Zambrano-Lopez, S.L. Netto: Blind estimators for reverberation time and direct-to-reverberant energy ratio using subband speech decomposition, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA. 2015. [Google Scholar]
- T.H. Falk, W.Y. Chan: Temporal dynamics for blind measurement of room acoustical parameters. IEEE Transactions on Instrumentation and Measurement 59 (2010) 978–989. [Google Scholar]
- F. Xiong, S. Goetze, B.T. Meyer: Blind estimation of reverberation time based on spectro-temporal modulation filtering, in Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada. 2013, pp. 443–447. [Google Scholar]
- N.R. Shabtai, Y. Zigel, B. Rafaeli: Towards room-volume classification from reverberant speech using room-volume feature extraction and room-acoustics parameters. Acta Acustica United with Acustica 99 (2013) 658–669. [CrossRef] [Google Scholar]
- K. Kinoshita, M. Delcroix, S. Gannot, E.A.P. Habets, R. Haeb-Umbach, W. Kellermann, V. Leutnant, R. Mass, T. Nakatani, B. Raj, A. Sehr, T. Yoshioka: A summary of the REVERB challenge: state-of-the-art and remaining challenges in reverberant speech processing research. EURASIP Journal on Advances in Signal Processing 2016 (2016) 1–19. [Google Scholar]
- A. Andrijašević, H. Domitrović: Effects of word phonetic contents and speaking style on blind estimation of reverberation time, in Proc. of Alps Adria Acoustics Association Congress on Sound and Vibration, Ljubljana, Slovenia. 2016, pp. 201–208. [Google Scholar]
- B.T. Meyer, T. Jürgens, T. Wesker, T. Brand, B. Kollmeier: Human phoneme recognition depending on speech-intrinsic variability. Journal of the Acoustical Society of America 128 (2010) 3126–3141. [CrossRef] [Google Scholar]
- T.F. Quatieri: Production and classification of speech sounds, in Discrete-Time Speech Signal Processing: Principles and Practice, 1st edn., Chap. 3, NJ, USA, Prentice Hall. 2001, pp. 55–110. [Google Scholar]
- T.D. Rossing, Editor: The human voice in speech and singing, in Springer Handbook of Acoustics, Chap. 16, Berlin, Springer. 2007, pp. 669–712. [Google Scholar]
- M. Jeub, M. Schäfer, P. Vary: A binaural room impulse response database for the evaluation of dereverberation algorithms, in Proceedings of the International Conference on Digital Signal Processing, Santorini, Greece. 2009, pp. 1–4. [Google Scholar]
- C. Diaz, A. Pedrero: The reverberation time of furnished rooms in dwellings. Applied Acoustics 66 (2005) 945–956. [CrossRef] [Google Scholar]
- Available online: http://www.commsp.ee.ic.ac.uk/~sap/projects/blindestimation-of-acoustic-parameters-from-speech/blind-t60-estimator/. Last viewed on: 16th May 2018. [Google Scholar]
- J. Schnupp, I. Nelken, A. King: Hearing speech. Auditory Neuroscience, Chap. 4, Cambridge, MA, MIT Press. 2011, pp. 139–176. [Google Scholar]
- T.I. Niaounakis, W.J. Davies: Perception of reverberation time in small listening rooms. Journal of the Audio Engineering Society 50 (2002) 343–350. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.