Open Access
Issue
Acta Acust.
Volume 4, Number 6, 2020
Article Number 27
Number of page(s) 12
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2020026
Published online 11 December 2020
  1. J.F. Petiot, P. Kersaudy, G. Scavone, S. Mac Adams, B. Gazengel: Investigations of the relationships between perceived qualities and sound parameters of saxophone reeds. Acustica United With Acta Acustica 103 (2017) 812–829. [CrossRef] [Google Scholar]
  2. A.H. Benade: Fundamentals of musical acoustics, 2nd ed. Dover, 1990. [Google Scholar]
  3. M. Campbell, C. Greated: The Musician’s Guide to Acoustics. Oxford University Press, 1989. [Google Scholar]
  4. N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments, 2nd ed. Springer, 1998. [CrossRef] [Google Scholar]
  5. A. Chaigne, J. Kergomard: Acoustics of Musical Instruments. Springer, 2016. [CrossRef] [Google Scholar]
  6. M. Campbell, J. Gilbert, A. Myers: The Science of Brass Instruments. Springer, 2020. [Google Scholar]
  7. A.H. Benade, D.J. Gans: Sound production in wind instruments. Annals of the New York Academy of Science 155 (1968) 247–263. [CrossRef] [Google Scholar]
  8. H. Bouasse: Instruments à vent tomes I et II. Delagrave, Paris, 1929; repr. Librairie Scientifique et Technique Albert Blanchard, Paris, 1986. [Google Scholar]
  9. J.-P. Dalmont, B. Gazengel, J. Gilbert, J. Kergomard: Some aspects of tuning and clean intonation in reed instruments. Applied Acoustics 461 (1995) 19–60. [CrossRef] [Google Scholar]
  10. J. Gilbert, E. Brasseur, J.P. Dalmont, C. Maniquet: Acoustical evaluation of the Carnyx of Tintignac. Proceedings of Acoustics 2012, Nantes, 2012. [Google Scholar]
  11. D.M. Campbell, J. Gilbert, P. Holmes: Seeking the sound of ancient horns. ASA Meeting, Boston, 2017. [Google Scholar]
  12. W. Kausel: Optimization of brasswind instruments and its application in bore reconstruction. Journal of New Music Research 30 (2001) 69–82. [CrossRef] [Google Scholar]
  13. A. Braden, M. Newton, D.M. Campbell: Trombone bore optimization based on input impedance targets. Journal of the Acoustical Society of America 125 (2009) 2404–2412. [CrossRef] [Google Scholar]
  14. D. Noreland, J. Kergomard, F. Laloë, C. Vergez, P. Guillemain, A. Guilloteau: The logical clarinet: Numerical optimization of the geometry of woodwind instruments. Acta Acustica United With Acustica 99 (2013) 615–628. [CrossRef] [Google Scholar]
  15. W.L. Coyle, P. Guillemain, J. Kergomard, J.-P. Dalmont: Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas. Journal of the Acoustical Society of America 138 (2015) 2770–2781. [CrossRef] [Google Scholar]
  16. R. Tournemenne, J.F. Petiot, B. Talgorn, M. Kokkolaras, J. Gilbert: Sound simulation based design optimization of brass wind instruments. Journal of the Acoustical Society of America 145 (2019) 3795–3804. [CrossRef] [Google Scholar]
  17. M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillations of musical instruments. Journal of the Acoustical Society of America 74 (1983) 1325–1345. [CrossRef] [Google Scholar]
  18. J.-P. Dalmont, J. Gilbert, J. Kergomard: Reed instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy. Acustica 86 (2000) 671–684. [Google Scholar]
  19. J.-B. Doc, C. Vergez, S. Missoum: A minimal model of a single-reed instrument producing quasi-periodic sounds. Acta Acustica United With Acustica 100 (2014) 543–554. [CrossRef] [Google Scholar]
  20. A. Hirschberg, J. Kergomard, G. Weinreich: Mechanics of musical instruments. Springer-Verlag, Wien, Austria, 1995. [Google Scholar]
  21. J. Gilbert, S. Maugeais, C. Vergez: From the bifurcation diagrams to the ease of playing of reed musical instruments. A theoretical illustration of the Bouasse-Benade prescription? International Symposium on Musical Acoustics, Detmold, Germany, 2019. [Google Scholar]
  22. B. Fabre, J. Gilbert, A. Hirschberg: Modeling of Wind Instruments. Chapter 7 of Springer Handbook of Systematic Musicology. Springer-Verlag, 2018. [Google Scholar]
  23. T.A. Wilson, G.S. Beavers: Operating modes of the clarinet. Journal of the Acoustical Society of America 56 (1974) 653–658. [Google Scholar]
  24. F. Silva, J. Kergomard, C. Vergez, J. Gilbert: Interaction of reed and acoustic resonator in clarinetlike systems. Journal of the Acoustical Society of America 124 (2008) 3284–3295. [CrossRef] [PubMed] [Google Scholar]
  25. W.E. Worman: Self-sustained non-linear oscillations of medium amplitude in clarinet-like systems, PhD Thesis. Case Western Reserve University, Cleveland, 1971. [Google Scholar]
  26. N. Grand, J. Gilbert, F. Laloë: Oscillation threshold of woodwind instruments. Acustica 83 (1997) 137–151. [Google Scholar]
  27. B. Ricaud, P. Guillemain, J. Kergomard, F. Silva, C. Vergez: Behavior of reed woodwind instruments around the oscillation threshold. Acta Acustica United With Acustica 95 (2009) 733–743. [CrossRef] [Google Scholar]
  28. C. Maganza, R. Caussé, F. Laloë: Bifurcations, period doubling and chaos in clarinet like systems. Europhysics Letters 1 (1986) 295–302. [CrossRef] [Google Scholar]
  29. P.-A. Taillard, J. Kergomard, F. Laloë: Iterated maps for clarinet-like systems. Nonlinear Dynamics 62 (2010) 253–271. [CrossRef] [Google Scholar]
  30. J.-P. Dalmont, J. Gilbert, J. Kergomard, S. Ollivier: An analytical prediction of the oscillation and extinction thresholds of a clarinet. Journal of the Acoustical Society of America 118 (2005) 3294–3305. [CrossRef] [PubMed] [Google Scholar]
  31. E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede, X.J. Wang: auto97: Continuation and bifurcation software for ordinary differential equations (with HomCont) User’s Guide. Concordia Univ. (1997). [Google Scholar]
  32. S. Karkar, B. Cochelin, C. Vergez: A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities. Journal of Sound and Vibration 332 (2013) 968–977. [CrossRef] [Google Scholar]
  33. http://indy.cs.concordia.ca/auto/ [Google Scholar]
  34. V. Debut, J. Kergomard: Analysis of the self-sustained oscillations of a clarinet as a Van der Pol oscillator. International Congress on Acoustics, Kyoto, 2004. [Google Scholar]
  35. F. Silva, C. Vergez, P. Guillemain, J. Kergomard, V. Debut: MoReeSC: a framework for the simulation and analysis of sound production in reed and brass instruments. Acta Acustica United With Acustica 100 (2014) 126–138. [CrossRef] [Google Scholar]
  36. S.H. Strogatz: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity), 2nd ed., Kindle, 2019. [Google Scholar]
  37. B. Gazengel: Caractérisation objective de la qualité de justesse, de timbre et d’émission des instruments à vent à anche simple, PhD Thesis. Université du Maine, 1994. [Google Scholar]
  38. B. Gazengel, J. Gilbert: From the measured input impedance to the synthesized pressure signal: application to the saxophone. Proceedings of the International Symposium on Musical Acoustics, Dourdan, July 2–6, 1995. [Google Scholar]
  39. L. Guillot, B. Cochelin, C. Vergez: A Taylor series-based continuation method for solutions of dynamical systems. Nonlinear Dynamics 98 (2019) 2827–2845. [CrossRef] [Google Scholar]
  40. V. Freour, H. Masuda, S. Usa, E. Tominaga, Y. Tohgi, B. Cochelin, C. Vergez: Numerical analysis and comparison of brass instruments by continuation. International Symposium on Musical Acoustics, Detmold, Germany, 2019. [Google Scholar]
  41. L. Velut, C. Vergez, J. Gilbert, M. Djahanbani: How well can Linear Stability Analysis predict the behaviour of an outward valve brass instrument model? Acustica United With Acta Acustica 103 (2016) 132–148. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.