Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 28
Number of page(s) 10
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2021021
Published online 20 July 2021
  1. R. Martínez-Sala, J. Sancho, J.V. Sánchez-Pérez, V. Gómez, J. Llinares, F. Meseguer: Sound attenuation by sculpture. Nature, London 387 (1995) 241. [Google Scholar]
  2. Y.Y. Chen, Z. Ye: Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E 64, 3 (2001) 036616. [Google Scholar]
  3. M.S. Kushwaha: Stop-bands for periodic metallic rods: sculptures that can filter the noise. Applied Physics Letters 70, 24 (1997) 3218–3220. [Google Scholar]
  4. J.V. Sánchez-Pérez, C. Rubio, R. Martínez-Sala, R. Sánchez-Grandia, V. Gómez: Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters 81 (2002) 5240. [Google Scholar]
  5. M.P. Peiró-Torres, M.P. Navarro, M. Ferri, J.M. Bravo, J.V. Sánchez-Pérez, J. Redondo: Sonic crystals acoustic screens and diffusers. Applied Acoustics 148 (2019) 399–408. [Google Scholar]
  6. EN 1793–2:2018: Road traffic noise reducing devices – Test method for determining the acoustic performance – Part 2: Intrinsic characteristics of airborne sound insulation under diffuse sound field conditions. [Google Scholar]
  7. EN 1793–6:2018: Road traffic noise reducing devices -Test method for determining the acoustic performance – Part 6: Intrinsic characteristics – In situ values of airborne sound insulation under direct sound field conditions. [Google Scholar]
  8. F. Zaviska: Uber die beugung elektromagnetischer wellen an parallelen, unendlich langen kreisylindern. Annalen der Physik 345, 5 (1913) 1023–1056. [Google Scholar]
  9. W. Von Ignatowsky: Zur theorie der gitter. Annalen der Physik. 349, 11 (1914) 369–436. [Google Scholar]
  10. V. Twersky: On scattering of waves by the infinite grating of circular cylinders. IRE Trans. on Antennas and Propagation 10 (1962) 737. [Google Scholar]
  11. S. Guenneau, A.B. Movchan: Analysis of elastic band structures for oblique incidence. Archive for Rational Mechanics and Analysis 171, 1 (2004) 129–150. [Google Scholar]
  12. Y.F. Wang, Y.S. Wahng, X.X. Su: Large bandaps of two-dimensional phononic crystals with cross-like holes. Journal of Applied Physics 110, 11 (2011) 113520. [Google Scholar]
  13. M. Liu, J. Xiang, H. Gao, Y. Jiang, Y. Zhou, F. Li: Research on band structure of one-dimensional phononic crystals based on wavelet finite element method. CMES – Computer Modeling in Engineering & Sciences 97, 5 (2014) 425–436. [Google Scholar]
  14. J.V. Sánchez-Pérez, C. Rubio-Michavila, S. Castiñeira-Ibáñez: Towards the development of a software to design acoustic barriers based on sonic crystals: an overlapping model. Proceedings of Euronoise 2015 (2015) 2367–2371. [Google Scholar]
  15. K.S. Yee: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas Propagation 14 (1966) 302–307. [Google Scholar]
  16. J.G. Maloney, K.E. Cummings: Adaption of FDTD techniques to acoustic modelling. Rev. Prog. Applied Computational Electromagnetics 2 (1995) 724. [Google Scholar]
  17. Y. Cao, Z. Hou, Y. Liu: Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A 327, 2 (2004) 247–253. [Google Scholar]
  18. T. Miyashita: Sonic crystals and sonic wave-guides. Measurement Science and Technology 16, 5 (2005) R47. [Google Scholar]
  19. F.L. Li, Y.S. Wang, C. Zhang, G.L. Yu: Band-gap calculations of two-dimensional solid–fluid phononic crystals with the boundary element method. Wave Motion 50, 3 (2013) 525–541. [Google Scholar]
  20. F. Koussa, J. Defrance, P. Jean, P. Blanc-Benon: Acoustical efficiency of a sonic crystal assisted noise barrier. Acta Acustica United with Acustica 99, 3 (2013) 399–409. [Google Scholar]
  21. H.F. Gao, T. Matsumoto, T. Takahashi, H. Isakari: Analysis of band structure for 2D acoustic phononic structure by BEM and the block SS method. CMES – Computer Modeling in Engineering & Sciences 90, 4 (2013) 283–301. [Google Scholar]
  22. M. Karimi, P. Croaker, N. Kessissoglou: Boundary element solution for periodic acoustic problems. Journal of Sound and Vibration 360 (2016) 129–139. [Google Scholar]
  23. G. Fairweather, A. Karageorghis, P.A. Martin: The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements 27 (2003) 759–769. [Google Scholar]
  24. M. Martins, L. Godinho, L. Picado-Santos: Numerical evaluation of sound attenuation provided by periodic structures. Archives of Acoustics 38, 4 (2013) 503–516. [Google Scholar]
  25. P.G. Santos, J. Carbajo, L. Godinho, J. Ramis: Sound propagation analysis on sonic crystal elastic structures using the Method of Fundamental Solutions (MFS). CMC: Computers, Materials & Continua 43, 2 (2014) 109–136. [Google Scholar]
  26. L. Godinho, P. Amado-Mendes, A. Pereira, D. Soares Jr: An efficient MFS formulation for the analysis of acoustic scattering by periodic structures. Journal of Theoretical and Computational Acoustics 26, 1 (2018) 1850003–1–1850003–22. [Google Scholar]
  27. L. Godinho, J. Redondo, P. Amado-Mendes, The method of fundamental solutions for the analysis of infinite 3D sonic crystals. Engineering Analysis with Boundary Elements 98 (2018) 172–183. [Google Scholar]
  28. EN 1793–3:1998: Road traffic noise reducing devices. Test method for determining the acoustic performance. Normalized traffic noise spectrum. [Google Scholar]
  29. J. António, A. Tadeu, L. Godinho: A three-dimensional acoustics model using the method of fundamental solutions. Engineering Analysis with Boundary Elements 32, 6 (2008) 525–531. [Google Scholar]
  30. T.W. Wu, Editor: Boundary element acoustics: fundamentals and computer codes. WIT Press, Southampton, 2000. [Google Scholar]
  31. Y.Y. Chen, Z. Ye: Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E 64, 3 (2001) 036616. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.