Open Access
Acta Acust.
Volume 5, 2021
Article Number 41
Number of page(s) 13
Section Hearing, Audiology and Psychoacoustics
Published online 27 September 2021
  1. A. Schaub: Digital Hearing Aids. Thieme, 2008. [Google Scholar]
  2. H. Dillon: Hearing Aids. Thieme Publishers Series, Boomerang Press, 2012. [Google Scholar]
  3. M. Metz: Sandlin’s Textbook of Hearing Aid Amplification: Technical and Clinical Considerations. Plural Publishing, 2014. [Google Scholar]
  4. Draft of IEC 60118-16 ED1: Electroacoustics – Hearing aids – Part 16: Definition and verification of hearing aid features. Jan 2020. [Google Scholar]
  5. I. Brons: Perceptual evaluation of noise reduction in hearing aids. Dissertation at the University of Amsterdam – Faculty of Medicine, 2013. [Google Scholar]
  6. R.C. Hendriks, T. Gerkmann, J. Jensen: DFT-domain based single-microphone noise reduction for speech enhancement: A survey of the state of the art. Synthesis Lectures on Speech and Audio Processing 9 (Jan 2013) 1–80. [Google Scholar]
  7. F.Y. Chong, L.M. Jenstad: A critical review of hearing-aid single-microphone noise-reduction studies in adults and children. Disability and Rehabilitation: Assistive Technology 13 (Oct 2017) 600–608. [Google Scholar]
  8. J.I. Alcántara, B.C. Moore, V. Kühnel, S. Launer: Evaluation of the noise reduction system in a commercial digital hearing aid. International Journal of Audiology 42 (Jan 2003) 34–42. [CrossRef] [PubMed] [Google Scholar]
  9. T.A. Ricketts, B.W.Y. Hornsby: Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction. Journal of the American Academy of Audiology 16, 5 (2005) 270–277. [CrossRef] [PubMed] [Google Scholar]
  10. S. Nordrum, S. Erler, D. Garstecki, S. Dhar: Comparison of performance on the hearing in noise test using directional microphones and digital noise reduction algorithms. American Journal of Audiology 15 (Jun 2006) 81–91. [CrossRef] [PubMed] [Google Scholar]
  11. R. Bentler, L.-K. Chiou: Digital noise reduction: An overview. Trends in Amplification 10 (Jun 2006) 67–82. [CrossRef] [PubMed] [Google Scholar]
  12. H. Luts, K. Eneman, J. Wouters, M. Schulte, M. Vormann, M. Buechler, N. Dillier, R. Houben, W.A. Dreschler, M. Froehlich, H. Puder, G. Grimm, V. Hohmann, A. Leijon, A. Lombard, D. Mauler, A. Spriet: Multicenter evaluation of signal enhancement algorithms for hearing aids. The Journal of the Acoustical Society of America 127 (Mar 2010) 1491–1505. [CrossRef] [PubMed] [Google Scholar]
  13. D. Wendt, R.K. Hietkamp, T. Lunner: Impact of noise and noise reduction on processing effort. Ear and Hearing 38, 6 (2017) 690–700. [CrossRef] [PubMed] [Google Scholar]
  14. B. Ohlenforst, D. Wendt, S.E. Kramer, G. Naylor, A.A. Zekveld, T. Lunner: Impact of SNR, masker type and noise reduction processing on sentence recognition performance and listening effort as indicated by the pupil dilation response. Hearing Research 365 (Aug 2018) 90–99. [CrossRef] [PubMed] [Google Scholar]
  15. C. Bernarding, D.J. Strauss, R. Hannemann, H. Seidler, F.I. Corona-Strauss: Neurodynamic evaluation of hearing aid features using EEG correlates of listening effort. Cognitive Neurodynamics 11 (Feb 2017) 203–215. [CrossRef] [PubMed] [Google Scholar]
  16. K. Miles, C. McMahon, I. Boisvert, R. Ibrahim, P. de Lissa, P. Graham, B. Lyxell: Objective assessment of listening effort: Coregistration of pupillometry and EEG. Trends in Hearing 21 (Jul 2017). [CrossRef] [Google Scholar]
  17. I. Holube, K. Haeder, C. Imbery, R. Weber: Subjective listening effort and electrodermal activity in listening situations with reverberation and noise. Trends in Hearing 20 (Sep 2016). [CrossRef] [Google Scholar]
  18. S. Gatehouse, J. Gordon: Response times to speech stimuli as measures of benefit from amplification. British Journal of Audiology 24, 1 (1990) 63–68. PMID: 2317602. [CrossRef] [PubMed] [Google Scholar]
  19. R. Houben, M. van Doorn-Bierman, W.A. Dreschler: Using response time to speech as a measure for listening effort. International Journal of Audiology 52 (Sep 2013) 753–761. [CrossRef] [PubMed] [Google Scholar]
  20. A. Sarampalis, S. Kalluri, B. Edwards, E. Hafter: Objective measures of listening effort: Effects of background noise and noise reduction. Journal of Speech, Language, and Hearing Research 52 (Oct 2009) 1230–1240. [Google Scholar]
  21. J.L. Desjardins, K.A. Doherty: The effect of hearing aid noise reduction on listening effort in hearing-impaired adults. Ear and Hearing 35, 6 (2014) 600–610. [CrossRef] [PubMed] [Google Scholar]
  22. E.M. Picou, T.A. Ricketts: The effect of changing the secondary task in dual-task paradigms for measuring listening effort. Ear and Hearing 35, 6 (2014) 611–622. [CrossRef] [PubMed] [Google Scholar]
  23. J.-P. Gagné, J. Besser, U. Lemke: Behavioral assessment of listening effort using a dual-task paradigm. Trends in Hearing 21 (Jan 2017). [Google Scholar]
  24. C. Kwak, W. Han: Comparison of single-task versus dual-task for listening effort. Journal of Audiology and Otology 22 (Apr 2018) 69–74. [Google Scholar]
  25. S. Fredelake, I. Holube, A. Schlueter, M. Hansen: Measurement and prediction of the acceptable noise level for single-microphone noise reduction algorithms. International Journal of Audiology 51, 4 (2012) 299–308. [CrossRef] [PubMed] [Google Scholar]
  26. Y.-H. Wu, E. Stangl: The effect of hearing aid signal-processing schemes on acceptable noise levels. Ear and Hearing 34, 3 (2013) 333–341. [CrossRef] [PubMed] [Google Scholar]
  27. M. Schulte, M. Krüger, M. Meis, K.C. Wagener: Subjective listening effort. The Journal of the Acoustical Society of America 137 (Apr 2015) 2236–2236. [Google Scholar]
  28. M. Krueger, M. Schulte, T. Brand, I. Holube: Development of an adaptive scaling method for subjective listening effort. The Journal of the Acoustical Society of America 141 (Jun 2017) 4680–4693. [CrossRef] [PubMed] [Google Scholar]
  29. B. Hagerman, A. Olofsson: A method to measure the effect of noise reduction algorithms using simultaneous speech and noise. Acta Acustica United with Acustica 90, 2 (2004) 356–361. [Google Scholar]
  30. I. Holube, S. Fredelake, M. Hansen: Subjective and objective evaluation methods of complex hearing aids, in 8th International Congress on Audiology, Heidelberg. Jun 2007. [Google Scholar]
  31. H. Husstedt, M. Kuttner: Quantitative measurement of signal-to-noise ratio with the percentile analysis according to IEC 60118-15, in 44. Jahrestagung für Akustik (DAGA 2018), Munich. Mar 2018. [Google Scholar]
  32. N. Kienitz, M. Frenz, H. Husstedt: Evaluation der Störgeräuschunterdrückung von Hörsystemen durch eine Signalseparation im Frequenzbereich [Evaluation of the noise reduction of hearing aids by a separation of signals in the frequency domain], in 22. Jahrestagung der Deutsche Gesellschaft für Audiologie (DGA). Mar 2019. [Google Scholar]
  33. H. Husstedt, A. Mertins, M. Frenz: Evaluation of noise reduction algorithms in hearing aids for multiple signals from equal or different directions. Trends in Hearing Jan 22 (2018). [Google Scholar]
  34. D. McShefferty, W.M. Whitmer, M.A. Akeroyd: The just-noticeable difference in speech-to-noise ratio. Trends in Hearing 19 (Feb 2015) 233121651557231. [Google Scholar]
  35. I. Holube, S. Fredelake, M. Vlaming, B. Kollmeier: Development and analysis of an international speech test signal (ISTS). International Journal of Audiology 49, 12 (2010) 891–903. [CrossRef] [PubMed] [Google Scholar]
  36. EHIMA: Description and terms of use of the IFFM and IFnoise signals, in European Hearing Instrument Manufacturers Association. 2016. [Google Scholar]
  37. IEC 60318-5: Electroacoustics – Simulators of human head and ear – Part 5: 2 cm3 coupler for the measurement of hearing aids and earphones coupled to the ear by means of ear inserts. Aug 2006. [Google Scholar]
  38. IEC 60118-0: Electroacoustics – Hearing aids – Part 0: Measurement of the performance characteristics of hearing aids. Jun 2015. [Google Scholar]
  39. IEC 60118-15: Electroacoustics – Hearing aids – Part 15: Methods for characterising signal processing in hearing aids with a speech-like signal. Feb 2012. [Google Scholar]
  40. ISO 8253-2: Acoustics – Audiometric test methods – Part 2: Sound field audiometry with pure-tone and narrow-band test signals. Dec 2009. [Google Scholar]
  41. ISO 8253-3: Acoustics – Audiometric test methods – Part 3: Speech audiometry. Mar 2012. [Google Scholar]
  42. G.A. Miller, J.C.R. Licklider: The intelligibility of interrupted speech. The Journal of the Acoustical Society of America 22 (Mar 1950) 167–173. [Google Scholar]
  43. N. Li, P.C. Loizou: Factors influencing glimpsing of speech in noise. The Journal of the Acoustical Society of America 122 (Aug 2007) 1165–1172. [CrossRef] [PubMed] [Google Scholar]
  44. J. Rennies, I. Holube, J.L. Verhey: Loudness of speech and speech-like signals. Acta Acustica United with Acustica 99 (Mar 2013) 268–282. [Google Scholar]
  45. B.R. Glasberg, B.C.J. Moore: A model of loudness applicable to time-varying sounds. The Journal of the Audio Engineering Society 50, 5 (2002) 331–342. [Google Scholar]
  46. J. Chalupper, H. Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners. Acta Acustica United with Acustica 88 (May 2002) 378–386. [Google Scholar]
  47. J. Rennies, J.L. Verhey, H. Fastl: Comparison of loudness models for time-varying sounds. Acta Acustica United with Acustica 96 (Mar 2010) 383–396. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.