Open Access
Acta Acust.
Volume 5, 2021
Article Number 31
Number of page(s) 10
Section Acoustic Materials and Metamaterials
Published online 29 July 2021
  1. A. Guess: Calculation of perforated plate liner parameters from specified acoustic resistance and reactance. Journal of Sound and Vibration 40 (1975) 119–137. [Google Scholar]
  2. D.-Y. Maa: Potential of microperforated panel absorber. The Journal of the Acoustical Society of America 104 (1998) 2861–2866. [Google Scholar]
  3. M. Yang, S. Chen, C. Fu, P. Sheng: Optimal sound-absorbing structures. Materials Horizons 4 (2017) 673–680. [Google Scholar]
  4. Y. Wu, M. Yang, P. Sheng: Perspective: Acoustic metamaterials in transition. Journal of Applied Physics 123 (2018) 090901. [Google Scholar]
  5. B. Assouar, B. Liang, Y. Wu, Y. Li, J.-C. Cheng, Y. Jing: Acoustic metasurfaces. Nature Reviews Materials 1 (2018) 467–470. [Google Scholar]
  6. X. Cai, Q. Guo, G. Hu, J. Yang: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters 105 (2014) 121901. [Google Scholar]
  7. C. Chen, Z. Du, G. Hu, J. Yang: A low-frequency sound absorbing material with subwavelength thickness. Applied Physics Letters 110 (2017) 221903. [Google Scholar]
  8. Y. Wang, H. Zhao, H. Yang, J. Zhong, J. Wen: A space-coiled acoustic metamaterial with tunable low-frequency sound absorption. EPL (Europhysics Letters) 120 (2018) 54001. [Google Scholar]
  9. S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, Y. Li: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. The Journal of the Acoustical Society of America 145 (2019) 254–262. [Google Scholar]
  10. J.-P. Groby, W. Huang, A. Lardeau, Y. Aurégan: The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics 117 (2015) 124903. [Google Scholar]
  11. Y. Aurégan, M. Farooqui, J.-P. Groby: Low frequency sound attenuation in a flow duct using a thin slow sound material. The Journal of the Acoustical Society of America 139 (2016) EL149–EL153. [Google Scholar]
  12. F. Simon: Long elastic open neck acoustic resonator for low frequency absorption. Journal of Sound and Vibration 421 (2018) 1–16. [Google Scholar]
  13. W. Frommhold, H. Fuchs, S. Sheng, Acoustic performance of membrane absorbers, Journal of Sound and Vibration 170 (1994) 621–636. [Google Scholar]
  14. L. Huang: Modal analysis of a drumlike silencer. The Journal of the Acoustical Society of America 112 (2002) 2014–2025. [Google Scholar]
  15. G. Ma, M. Yang, S. Xiao, Z. Yang, P. Sheng: Acoustic metasurface with hybrid resonances. Nature Materials 13 (2014) 873. [Google Scholar]
  16. M. Yang, P. Sheng: Sound absorption structures: From porous media to acoustic metamaterials, Annual Review of Materials Research 47 (2017) 83–114. [Google Scholar]
  17. Y. Aurégan: Ultra-thin low frequency perfect sound absorber with high ratio of active area. Applied Physics Letters 113 (2018) 201904. [Google Scholar]
  18. X. Dai, Y. Aurégan: Flexural instability and sound amplification of a membrane-cavity configuration in shear flow. The Journal of the Acoustical Society of America 142 (2017) 1934–1942. [Google Scholar]
  19. H.K. Fan, R.C. Leung, G.C. Lam, Y. Aurégan, X. Dai: Numerical coupling strategy for resolving in-duct elastic panel aeroacoustic/structural interaction. AIAA Journal 56 (2018) 5033–5040. [Google Scholar]
  20. E. Martincic, A. Houdouin, S. Durand, N. Yaakoubi, E. Lefeuvre, Y. Aurégan: Acoustic absorber, acoustic wall and method for design and production (2019) US Patent 10,477,302. [Google Scholar]
  21. M. Farooqui, Y. Aurégan: Compact beam liners for low frequency noise, in 2018 AIAA/CEAS Aeroacoustics Conference, 2018, 4101. [Google Scholar]
  22. Y. Aurégan, M. Farooqui: In-parallel resonators to increase the absorption of subwavelength acoustic absorbers in the mid-frequency range. Scientific Reports 9 (2019) 1–6. [Google Scholar]
  23. J.-F. Allard, N. Atalla: Propagation of sound in porous media: modelling sound absorbing materials 2e. John Wiley & Sons, 2009. [Google Scholar]
  24. M. Åbom: Measurement of the scattering-matrix of acoustical two-ports. Mechanical Systems and Signal Processing 5 (1991) 89–104. [Google Scholar]
  25. M. Leroux, Y. Aurégan: Failures in the discrete models for flow duct with perforations: an experimental investigation, 265 (2003) 109–121. [Google Scholar]
  26. M. D’Elia, T. Humbert, Y. Aurégan: Effect of flow on an array of helmholtz resonators: Is kevlar a “magic layer”? The Journal of the Acoustical Society of America 148 (2020) 3392–3396. [Google Scholar]
  27. M.E. d’Elia, T. Humbert, Y. Auregan, J. Golliard: Optical measurements of the linear sound-flow interaction above a corrugated plate, in 25th AIAA/CEAS Aeroacoustics Conference, 2019, 2716. [Google Scholar]
  28. Y. Aurégan, M. Leroux, V. Pagneux: Measurement of liner impedance with flow by an inverse method, in 10th AIAA/CEAS Aeroacoustics Conference, 2004, 2838. [Google Scholar]
  29. H. Schlichting: Boundary layer theory. 7th ed. McGraw-Hill, New York, 1979. [Google Scholar]
  30. U. Ingard: Influence of fluid motion past a plane boundary on sound reflection, absorption, and transmission. The Journal of the Acoustical Society of America 31 (1959) 1035–1036. [Google Scholar]
  31. M. Myers: On the acoustic boundary condition in the presence of flow. Journal of Sound and Vibration 71 (1980) 429–434. [Google Scholar]
  32. Y. Renou, Y. Aurégan: Failure of the Ingard–Myers boundary condition for a lined duct: an experimental investigation, The Journal of the Acoustical Society of America 130 (2011) 52–60. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.