Issue |
Acta Acust.
Volume 5, 2021
Topical Issue - Auditory models: from binaural processing to multimodal cognition
|
|
---|---|---|
Article Number | 60 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/aacus/2021054 | |
Published online | 24 December 2021 |
- I.J. Hirsh: The influence of interaural phase on summation and inhibition. The Journal of the Acoustical Society of America 20 (1948) 536–544. [CrossRef] [Google Scholar]
- T.L. Langford, L.A. Jeffress: Effect of noise crosscorrelation on binaural signal detection. The Journal of the Acoustical Society of America 36 (1964) 1455–1458. [CrossRef] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: Effects of interaural delay, center frequency, and no more than “slight” hearing loss on precision of binaural processing: Empirical data and quantitative modeling. The Journal of the Acoustical Society of America 144 (2018) 292–307. https://doi.org/10.1121/1.5046515. [CrossRef] [PubMed] [Google Scholar]
- L.A. Jeffress: A place theory of sound localization. The Journal of Comparative and Physiological Psychology 41 (1948) 35–39. [CrossRef] [PubMed] [Google Scholar]
- C.E. Carr, M. Konishi: A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience 10 (1990) 3227–3246. https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990. [CrossRef] [PubMed] [Google Scholar]
- L.R. Rabiner, C.L. Laurence, N.I. Durlach: Further Results on Binaural Unmasking and the EC Model. Journal of the Acoustical Society of America 40 (1966) 62–70. https://doi.org/10.1121/1.1910065. [CrossRef] [PubMed] [Google Scholar]
- R.M. Stern, G.D. Shear: Lateralization and detection of low-frequency binaural stimuli: effects of distribution of internal delay. Journal of the Acoustical Society of America 100 (1996) 2278–2288. https://doi.org/10.1121/1.417937. [CrossRef] [Google Scholar]
- M. van der Heijden, C. Trahiotis: Masking with interaurally delayed stimuli: the use of “internal” delays in binaural detection. Journal of the Acoustical Society of America 105 (1999) 388–399. [CrossRef] [PubMed] [Google Scholar]
- J. Breebaart, S. Van De Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model structure. Journal of the Acoustical Society of America 110 (2001) 1074–1088. [CrossRef] [PubMed] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: Binaural detection as a joint function of masker bandwidth, masker interaural correlation, and interaural time delay: Empirical data and modeling”. Journal of the Acoustical Society of America 148 (2020) 3481–3488. https://doi.org/10.1121/10.0002869. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, G. Ashida: Computational models of binaural processing, in Binaural Hearing, Litovsky R.Y., Goupell M.J., Fay R.R., Popper A.N., Eds., Springer, New York. 2021, pp. 281–315. https://doi.org/10.1007/978-3-030-57100-9. [CrossRef] [Google Scholar]
- B.R. Glasberg, B.C.J. Moore: Derivation of auditory filter shapes from notched-noise data. Hearing Research 47 (1990) 103–138. https://doi.org/10.1016/0378-5955(90)90170-T. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, S.D. Ewert, V. Hohmann: Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication 53 (2011) 592–605. https://doi.org/10.1016/j.specom.2010.05.006. [CrossRef] [Google Scholar]
- M. Dietz, S.D. Ewert, V. Hohmann, B. Kollmeier: Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Research 1220 (2008) 234–245. https://doi.org/10.1016/j.brainres.2007.09.026. [CrossRef] [PubMed] [Google Scholar]
- P.X. Joris, B. van de Sande, A. Recio-Spinoso, M. van der Heijden: Auditory midbrain and nerve responses to sinusoidal variations in interaural correlation. Journal of Neuroscience 26 (2006) 279–289. [CrossRef] [PubMed] [Google Scholar]
- R. Bamler, D. Just: Phase statistics and decorrelation in SAR interferograms IGARSS ‘93, in Better understanding of earth environment. IEEE, Tokyo, Japan. 1993, pp. 980–984. https://doi.org/10.1109/IGARSS.1993.322637. [Google Scholar]
- M.J. Goupell, W.M. Hartmann: Interaural fluctuations and the detection of interaural incoherence: Bandwidth effects. Journal of the Acoustical Society of America 119 (2006) 3971–3986. https://doi.org/10.1121/1.2200147. [CrossRef] [PubMed] [Google Scholar]
- M.M. Sondhi, N. Guttman: Width of the spectrum effective in the binaural release of masking. Journal of the Acoustical Society of America 40 (1966) 600–606. [CrossRef] [Google Scholar]
- A.J. Kolarik, J.F. Culling: Measurement of the binaural auditory filter using a detection task. Journal of the Acoustical Society of America 127 (2010) 3009–3017. https://doi.org/10.1121/1.3365314. [CrossRef] [PubMed] [Google Scholar]
- S. van de Par, A. Kohlrausch: Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters. Journal of the Acoustical Society of America 106 (1999) 1940–1947. [CrossRef] [PubMed] [Google Scholar]
- J. Breebaart, S. Van De Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. Journal of the Acoustical Society of America 110 (2001) 1089–1104. [CrossRef] [PubMed] [Google Scholar]
- T. Marquardt, D. McAlpine: Masking with interaurally “double-delayed” stimuli: The range of internal delays in the human brain. Journal of the Acoustical Society of America 126 (2009) EL177–EL182. https://doi.org/10.1121/1.3253689. [CrossRef] [PubMed] [Google Scholar]
- M. Mc Laughlin, J.N. Chabwine, M. van der Heijden, P.X. Joris: Comparison of bandwidths in the inferior colliculus and the auditory nerve. II: Measurement using a temporally manipulated stimulus. Journal of Neurophysiology 100 (2008) 2312–2327. https://doi.org/10.1152/jn.90252.2008. [CrossRef] [PubMed] [Google Scholar]
- M. Mc Laughlin, B. van de Sande, M. van der Heijden, P.X. Joris: Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus. Journal of Neurophysiology 98 (2007) 2566–2579. https://doi.org/10.1152/jn.00595.2007. [CrossRef] [PubMed] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: Behavioral manifestations of audiometrically-defined “slight” or “hidden” hearing loss revealed by measures of binaural detection. Journal of the Acoustical Society of America 140 (2016) 3540–3548. https://doi.org/10.1121/1.4966113. [CrossRef] [PubMed] [Google Scholar]
- S.D. Ewert: AFC – A modular framework for running psychoacoustic experiments and computational perception models, in Proceedings of the International Conference on Acoustics AIA-DAGA2013, Merano, Italy. 2013, pp. 1326–1329. [Google Scholar]
- H. Levitt: Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49 (1971) 467–477. [CrossRef] [Google Scholar]
- S. Thavam, M. Dietz: Smallest perceivable interaural time differences. Journal of the Acoustical Society of America 145 (2019) 458–468. [CrossRef] [PubMed] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: Converging measures of binaural detection yield estimates of precision of coding of interaural temporal disparities. Journal of the Acoustical Society of America 141 (2017) 1150–1160. https://doi.org/10.1121/1.4935606. [CrossRef] [PubMed] [Google Scholar]
- W.T. Bourbon, L.A. Jeffress: Effect of bandwidth of masking noise on the detection of homophasic and antiphasic tonal signals. Journal of the Acoustical Society of America 37 (1965) 1180–1181. [CrossRef] [Google Scholar]
- V. Hohmann: Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica United with Acustica 88 (2002) 433–442. [Google Scholar]
- M.W.H. Remme, R. Donato, J. Mikiel-Hunter, J.A. Ballestero, S. Foster, J. Rinzel, D. McAlpine: Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues. Proceedings of the National Academy of Sciences of the United States of America 111 (2014) E2339–E2348. https://doi.org/10.1073/pnas.1316216111. [PubMed] [Google Scholar]
- N.I. Durlach: Binaural signal detection: Equalization and cancellation theory, in Foundations of Modern Auditory Theory, Tobias J., Ed., Vol. 2, Academic Press, New York. 1972, pp. 369–462. [Google Scholar]
- S.D. Ewert, N. Paraouty, C. Lorenzi: A two-path model of auditory modulation detection using temporal fine structure and envelope cues. European Journal of Neuroscience 51 (2020) 1265–1278. https://doi.org/10.1111/ejn.13846. [CrossRef] [PubMed] [Google Scholar]
- E. Zwicker, G.B. Henning: The four factors leading to binaural masking-level differences. Hearing Research 19 (1985) 29–47. https://doi.org/10.1016/0378-5955(85)90096-6. [CrossRef] [PubMed] [Google Scholar]
- S.K. Isabelle, H.S. Colburn: Detection of tones in reproducible narrow-band noise. Journal of the Acoustical Society of America 89 (1991) 352–359. https://doi.org/10.1121/1.400470. [CrossRef] [PubMed] [Google Scholar]
- M. van der Heijden, P.X. Joris: Interaural correlation fails to account for detection in a classic binaural task: Dynamic ITDs dominate N0Sπ detection. Journal of the Association for Research in Otolaryngology 11 (2010) 113–131. https://doi.org/10.1007/s10162-009-0185-8. [CrossRef] [PubMed] [Google Scholar]
- H. Lüddemann, H. Riedel, B. Kollmeier: Logarithmic scaling of interaural cross correlation: a model based on evidence from psychophysics and EEG, in Hearing: From sensory processing to perception – 14th International Symposium on Hearing, Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J, Eds., Springer, Berlin. 2007, pp. 379–388. [CrossRef] [Google Scholar]
- J.F. Culling, H.S. Colburn, M. Spurchise: Interaural correlation sensitivity. Journal of the Acoustical Society of America 110 (2001) 1020–1029. https://doi.org/10.1121/1.1383296. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, J.H. Lestang, P. Majdak, R.M. Stern, T. Marquardt, S.D. Ewert, W.M. Hartmann, D.F. Goodman: A framework for testing and comparing binaural models. Hearing Research 360 (2018) 92–106. [CrossRef] [PubMed] [Google Scholar]
- C. Trahiotis, L.R. Bernstein, M.A. Akeroyd: Manipulating the “straightness” and “curvature” of patterns of interaural cross correlation affects listeners’ sensitivity to changes in interaural delay. Journal of the Acoustical Society of America 109 (2001) 321–330. [CrossRef] [PubMed] [Google Scholar]
- C.A. Shera, J.J. Guinan, A.J. Oxenham: Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. Journal of the Association for Research in Otolaryngology 11 (2010) 343–365. https://doi.org/10.1007/s10162-010-0217-4. [CrossRef] [PubMed] [Google Scholar]
- R.H. Domnitz, H.S. Colburn: Analysis of binaural detection models for dependence on interaural target parameters. Journal of the Acoustical Society of America 59 (1976) 598–601. [CrossRef] [PubMed] [Google Scholar]
- J.F. Culling, M. Lavandier: Binaural and spatial unmasking, in Binaural Hearing, Litovsky R.Y., Goupell M.J., Fay R.R., Popper A.N., Eds., Springer, New York. 2021, pp. 209–242. https://doi.org/10.1007/978-3-030-57100-9. [CrossRef] [Google Scholar]
- P.X. Joris, B. van de Sande, D.H. Louage, M. van der Heijden: Binaural and cochlear disparities. Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 12917–12922. [CrossRef] [PubMed] [Google Scholar]
- D. McAlpine, D. Jiang, A.R. Palmer: A neural code for low-frequency sound localization in mammals. Nature Neuroscience 4 (2001) 396–401. [CrossRef] [PubMed] [Google Scholar]
- S.K. Thompson, K. von Kriegstein, A. Deane-Pratt, T. Marquardt, R. Deichmann, T.D. Griffiths, D. McAlpine: Representation of interaural time delay in the human auditory midbrain. Nature Neuroscience 9 (2006) 1096–1098. [CrossRef] [PubMed] [Google Scholar]
- P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.0: The toolbox for reproducible research in auditory modeling. Submitted to Acta Acustica. [Google Scholar] [Google Scholar]
- M. Dietz, J. Encke, K.I. Bracklo, S.D. Ewert: Data for the Article: Prediction of tone detection thresholds in interaurally delayed noise based on interaural phase difference fluctuations (0.2). Zenodo, 2021. https://doi.org/10.5281/zenodo.5410778. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.