Open Access
Issue |
Acta Acust.
Volume 6, 2022
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 10 | |
Section | Acoustic Materials and Metamaterials | |
DOI | https://doi.org/10.1051/aacus/2021058 | |
Published online | 08 April 2022 |
- Y. Zhang, K. Chen, X. Hao, Y. Cheng: A review of underwater acoustic metamaterials. Kexue Tongbao/Chinese Science Bulletin 65, 15 (2020) 1396–1410. [CrossRef] [Google Scholar]
- S. Huang, L. Peng, H. Sun, Q. Wang, W. Zhao, S. Wang: Frequency response of an underwater acoustic focusing composite lens. Applied Acoustics 173 (2021) 107692. [CrossRef] [Google Scholar]
- M. Duan, C. Yu, F. Xin, T.J. Lu: Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband. Applied Physics Letters 118, 7 (2021) 071904. [CrossRef] [Google Scholar]
- Y. Shen, C. Qiu, X. Cai, L. Ye, J. Lu, M. Ke, Z. Liu: Valley-projected edge modes observed in underwater sonic crystals. Applied Physics Letters 114, 2 (2019) 023501. [CrossRef] [Google Scholar]
- J. Chen, J. Rao, D. Lisevych, Z. Fan: Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Applied Physics Letters 114, 10 (2019) 104101. [CrossRef] [Google Scholar]
- A. Sukhovich, L. Jing, J.H. Page: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Physical Review B 77, 1 (2008) 014301. [CrossRef] [Google Scholar]
- L. Wu, L. Chen: An acoustic bending waveguide designed by graded sonic crystals. Journal of Applied Physics 110, 11 (2011) 114507. [CrossRef] [Google Scholar]
- B. Li, J. Guan, K. Deng, H. Zhao: Splitting of self-collimated beams in two-dimensional sonic crystals. Journal of Applied Physics 112, 12 (2012) 124514. [CrossRef] [Google Scholar]
- B. Yuan, Y. Tian, Y. Cheng, X. Liu: An acoustic Maxwell’s fish-eye lens based on gradient-index metamaterials. Chinese Physics B 25, 10 (2016) 104301. [CrossRef] [Google Scholar]
- X. Hu, C.T. Chan, J. Zi: Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E 71, 5 (2005) 055601. [CrossRef] [PubMed] [Google Scholar]
- S.S. Lin, B.R. Tittmann, T.J. Huang: Design of acoustic beam aperture modifier using gradient-index phononic crystals. Journal of Applied Physics 111, 12 (2012) 123510. [CrossRef] [PubMed] [Google Scholar]
- Y. Xie, Y. Fu, Z. Jia, J. Li, C. Shen, Y. Xu, H. Chen, S.A. Cummer: Acoustic imaging with metamaterial Luneburg lenses. Scientific Reports 8, 1 (2018) 16188. [CrossRef] [PubMed] [Google Scholar]
- S. Kim: Sound focusing by acoustic Luneburg lens (2014). ArXiv preprint [arXiv: 1409.5489] [Google Scholar]
- Y. Fu, J. Li, Y. Xie, C. Shen, Y. Xu, H. Chen, S.A. Cummer: Compact acoustic retroreflector based on a mirrored Luneburg lens. Physical Review Materials 2, 10 (2018) 105202. [CrossRef] [Google Scholar]
- S. Tol, F.L. Degertekin, A. Erturk: Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting. Applied Physics Letters 111, 1 (2017) 013503. [CrossRef] [Google Scholar]
- N.J. Whitehead, S.A.R. Horsley, T.G. Philbin, V.V. Kruglyak: A Luneburg lens for spin waves. Applied Physics Letters 113, 21 (2018) 212404. [CrossRef] [Google Scholar]
- S.S. Lin, T.J. Huang, J. Sun, T. Wu: Gradient-index phononic crystals. Physical Review B 79, 9 (2009) 094302. [CrossRef] [Google Scholar]
- J. Kim, S. Lee, J. Jo, S. Wang, S. Kim: Acoustic imaging by three-dimensional acoustic Luneburg meta-lens with lattice columns. Applied Physics Letters 118, 9 (2021) 091902. [CrossRef] [Google Scholar]
- S. Kim, Byeong-Won, Kyung-Min, G.S. Lim: Sound reception system by an acoustic Luneburg lens (2019). ArXiv preprint [arXiv: 1906.07174] [Google Scholar]
- C.M. Park, S.H. Lee: Acoustic Luneburg lens using orifice-type metamaterial unit cells. Applied Physics Letters 112, 7 (2018) 074101. [CrossRef] [Google Scholar]
- L. Zhao, E. Laredo, O. Ryan, A. Yazdkhasti, H. Kim, R. Ganye, T. Horiuchi, M. Yu: Ultrasound beam steering with flattened acoustic metamaterial Luneburg lens. Applied Physics Letters 116, 7 (2020) 071902. [CrossRef] [Google Scholar]
- R. Yu, H. Wang, W. Chen, C. Zhu, D. Wu: Latticed underwater acoustic Luneburg lens. Applied Physics Express 13, 8 (2020) 84003. [Google Scholar]
- A. Allam, K. Sabra, A. Erturk: 3D-printed gradient-index phononic crystal lens for underwater acoustic wave focusing, Physical Review Applied 13, 6 (2020) 064064. [CrossRef] [Google Scholar]
- C. Lu, R. Yu, Q. Ma, K. Wang, J. Wang, D. Wu: GRIN metamaterial generalized Luneburg lens for ultra-long acoustic jet. Applied Physics Letters 118, 14 (2021) 144103. [CrossRef] [Google Scholar]
- Y. Ruan, X. Liang, Z. Wang, T. Wang, Y. Deng, F. Qu, J. Zhang: 3-D underwater acoustic wave focusing by periodic structure. Applied Physics Letters 114, 8 (2019) 081908. [CrossRef] [Google Scholar]
- H. Sun, S. Wang, S. Huang, L. Peng, Q. Wang, W. Zhao, J. Zou: 3D focusing acoustic lens optimization method using multi-factor and multi-level orthogonal test designing theory. Applied Acoustics 170 (2020) 107538. [CrossRef] [Google Scholar]
- H. Sun, S. Wang, S. Huang, L. Peng, Q. Wang, W. Zhao: Design and characterization of an acoustic composite lens with high-intensity and directionally controllable focusing. Scientific Reports 10, 1 (2020) 1469. [CrossRef] [PubMed] [Google Scholar]
- H.C. Song, G. Byun: Localization of a distant ship using a guide ship and a vertical array. The Journal of the Acoustical Society of America 149, 4 (2021) 2173–2178. [CrossRef] [PubMed] [Google Scholar]
- H.C. Song, C. Cho: Array invariant-based source localization in shallow water using a sparse vertical array. The Journal of the Acoustical Society of America 141, 1 (2017) 183–188. [CrossRef] [PubMed] [Google Scholar]
- M. Brandstein: Microphone arrays: Signal processing techniques and applications. Springer Science & Business Media, Germany, 2001. [CrossRef] [Google Scholar]
- J. Gu, W. Lin, C. Kan: Sound source localization using piezoelectric acoustic metasurfaces. Acoustics Australia 48, 3 (2020) 455–461. [CrossRef] [Google Scholar]
- X. Sun, H. Jia, Z. Zhang, Y. Yang, Z. Sun, J. Yang: Sound localization and separation in 3D space using a single microphone with a metamaterial enclosure. Advanced Science 7, 3 (2020) 1902271. [CrossRef] [Google Scholar]
- Y. Jin, B. Djafari-Rouhani, D. Torrent: Gradient index phononic crystals and metamaterials. Nanophotonics 8, 5 (2019) 685–701. [CrossRef] [Google Scholar]
- Y. Cao, Z. Hou, Y. Liu: Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Communications 132, 8 (2004) 539–543. [CrossRef] [Google Scholar]
- G. Wang, J. Wen, Y. Liu, X. Wen: Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Physical Review B 69, 18 (2004) 184302. [CrossRef] [Google Scholar]
- Y. Tian, Z. Tan, X. Han, W. Li: Phononic crystal lens with an asymmetric scatterer. Journal of Physics D: Applied Physics 52, 2 (2019) 25102. [Google Scholar]
- D.C. Calvo, A.L. Thangawng, M. Nicholas, C.N. Layman: Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters 107, 1 (2015) 014103. [CrossRef] [Google Scholar]
- D. Tarrazó-Serrano, S. Pérez-López, P. Candelas, A. Uris, C. Rubio: Acoustic focusing enhancement in Fresnel Zone Plate Lenses. Scientific Reports 9, 1 (2019) 7067. [CrossRef] [PubMed] [Google Scholar]
- Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier: Two-dimensional phononic crystals: Examples and applications. Surface Science Reports 65, 8 (2010) 229–291. [CrossRef] [Google Scholar]
- X. Su, I. Ullah, X. Liu, D. Choi: A review of underwater localization techniques, algorithms, and challenges. Journal of Sensors 2020 (2020) 6403161. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.