Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 42
Number of page(s) 11
Section Physical Acoustics
DOI https://doi.org/10.1051/aacus/2022037
Published online 23 September 2022
  1. M.M. Sigalas, E.N. Economou: Attenuation of multiple-scattered sound. Europhysics Letters 36 (1996) 241–246. [CrossRef] [Google Scholar]
  2. J.V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, F. Gálvez: Sound attenuation by a two-dimensional array of rigid cylinders. Physical Review Letters 80 (1998) 5325–5328. [CrossRef] [Google Scholar]
  3. P.A. Deymier (Ed.): Acoustic metamaterials and phononic crystals, volume 173 of Springer Series in Solid-State Sciences. Berlin, Germany: Springer, 2013. [CrossRef] [Google Scholar]
  4. H. Pichard, O. Richoux, J.-P. Groby: Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal. Journal of the Acoustical Society of America 132 (2012) 2816–2822. [CrossRef] [PubMed] [Google Scholar]
  5. A. Sukhovich, B. Merheb, K. Muralidharan, J.O. Vasseur, Y. Pennec, P.A. Deymier, J.H. Page: Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Physical Review Letters 102 (2009) 154301. [CrossRef] [PubMed] [Google Scholar]
  6. A.-C. Hladky-Hennion, J.O. Vasseur, G. Haw, C. Croënne, L. Haumesser, A.N. Norris: Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters 102 (2013) 144103. [CrossRef] [Google Scholar]
  7. L. de Ryck, J. Cuenca, K. Jambrosic, C. Glorieux, M. Rychtarikova, V. Romero-Garcia, A. Cebrecos, N. Jimenez, J.-P. Groby: Perceptual evaluation of metamaterials as insulation partitions: A listening test within the cost action denorms ca15125, in Proc. ISMA2018 and USD2018, Leuven, Belgium, 2018, 1147–1162. [Google Scholar]
  8. I. Spiousas, P.E. Etchemendy, E.R. Calcagno, M.C. Eguia: Shifts in the judgement of distance to a sound source in the presence of a sonic crystal. Proceedings of Meetings on Acoustics 19 (2013) 050162. [CrossRef] [Google Scholar]
  9. I. Spiousas, P.E. Etchemendy, R.O. Vergara, E.R. Calcagno, M.C. Eguia: An auditory illusion of proximity of the source induced by sonic crystals. PLoS One 10 (2015) e0133271. [CrossRef] [PubMed] [Google Scholar]
  10. V.S. Gomez, A. Alberti, I. Spiousas, L. Salzano, O. Edelstein, M. Eguia: Tunable sonic crystals as an extension of acoustical musical instruments, in Proc. International Symposium on Musical and Room Acoustics, La Plata, Argentina. Paper number ISMRA2016–77, 2016, 1–10. [Google Scholar]
  11. A.C. Hennion, R. Bossut, J.N. Decarpigny, C. Audoly: Analysis of the scattering of a plane acoustic wave by a periodic structure using the finite element method: application to compliant tube gratings. The Journal of the Acoustical Society of America 87 (1990) 1861–1870. [CrossRef] [Google Scholar]
  12. P. Langlet, A.-C. Hladky-Hennion, J.-N. Decarpigny: Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. Journal of the Acoustical Society of America 98 (1995) 2792. [CrossRef] [Google Scholar]
  13. Alexey Sukhovich, Li Jing, John H. Page: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Physical Review B 77 (2008) 014301. [CrossRef] [Google Scholar]
  14. J.O. Vasseur, P.A. Deymier, A. Khelif, P. Lambin, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, N. Fettouhi, J. Zemmouri: Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study. Physical Review E 65 (2002) 056608. [CrossRef] [Google Scholar]
  15. International Office for Standardization, Acoustics – methods for calculating loudness – part 2: Moore-Glasberg method. International Organization for Standardization, Geneva, Switzerland, 2017. [Google Scholar]
  16. B.C.J. Moore: An Introduction to the Psychology of Hearing, 6th edn. Brill Publishing, Leiden, The Netherlands, 2013. [Google Scholar]
  17. International Telecommunication Union: Head and torso simulator for telephonometry (ITU-T Rec. P.58). Technical report, ITU, Geneva, Switzerland, 1996. [Google Scholar]
  18. H. Lilliefors: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62 (1967) 399–402. [CrossRef] [Google Scholar]
  19. P. McKight, J. Najab: Kruskal wallis test. In: I.B. Weiner, W.E. Craighead, Ed. The Corsini encyclopedia of psychology, Wiley, 2010. [Google Scholar]
  20. F. Wilcoxon: Individual comparisons by ranking methods. Biometrics Bulletin 1 (1945) 80–83. [Google Scholar]
  21. M. Maier, D. Lakens: Justify your alpha: A primer on two practical approaches. Advances in Methods and Practices in Psychological Science 5 (2022) 1–14. [Google Scholar]
  22. A. Krynkin, O. Umnova, A. Yung Boon Chong, S. Taherzadeh, K. Attenborough: Predictions and measurements of sound transmission through a periodic array of elastic shells in air. Journal of the Acoustical Society of America 128 (2010) 3496–3506. [CrossRef] [PubMed] [Google Scholar]
  23. J. Sánchez-Dehesa, V.M. Garcia-Chocano, D. Torrent, F. Cervera, S. Cabrera, F. Simon: Noise control by sonic crystal barriers made of recycled materials. Journal of the Acoustical Society of America 129 (2011) 1173–1183. [CrossRef] [PubMed] [Google Scholar]
  24. C. Lagarrigue, J.-P. Groby, V. Tournat: Sustainable sonic crystal made of resonating bamboo rods. Journal of the Acoustical Society of America 133 (2013) 247–254. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.