Open Access
Issue |
Acta Acust.
Volume 7, 2023
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 11 | |
Section | Acoustic Materials and Metamaterials | |
DOI | https://doi.org/10.1051/aacus/2023021 | |
Published online | 09 June 2023 |
- ASTM C423:22: Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM, West Conshohocken, PA, 2022, p. 2009. [Google Scholar]
- ISO 11654:1997: Acoustics – sound absorbers for use in buildings – rating of sound absorption. International Organization for Standardization, Geneva, Switzerland. 1997. [Google Scholar]
- ISO 354:2003: Acoustics – Measurement of sound absorption in a reverberation room. International Organization for Standardization, Geneva, Switzerland, 2003. [Google Scholar]
- P.E. Sabine: The measurement of sound absorption coefficients. Journal of the Franklin Institute 207, 3 (1929) 341–368. [CrossRef] [Google Scholar]
- V.L. Chrisler: Dependence of sound absorption upon the area and distribution of the absorbent material. Journal of Research of National Bureau of Standards 13, 2 (1934) 169–187. [CrossRef] [Google Scholar]
- R.E. Halliwell: Inter-laboratory variability of sound absorption measurement. Journal of the Acoustical Society of America 73, 3 (1983) 880–886. [CrossRef] [Google Scholar]
- M. Vercammen: Improving the accuracy of sound absorption measurement according to ISO 354, in Proceedings of the International Symposium on Room Acoustics, Melbourne, Australia, 2010, pp. 1–4. [Google Scholar]
- C.-H. Jeong, J.-H. Chang: Reproducibility of the random incidence absorption coefficient converted from the sabine absorption coefficient. Acta Acustica united with Acustica 101, 1 (2015) 99–112. [CrossRef] [Google Scholar]
- C. Scrosati, F. Martellotta, F. Pompoli, A. Schiavi, A. Prato, D. D’Orazio, M. Garai, N. Granzotto, A. Di Bella, F. Scamoni, M. Depalma, C. Marescotti, F. Serpilli, V. Lori, P. Nataletti, D. Annesi, A. Moschetto, R. Baruffa, G. De Napoli, F. D’Angelo, S. Di Filippo: Towards more reliable measurements of sound absorption coefficient in reverberation rooms: An inter-laboratory test. Applied Acoustics 165 (2020) 107298. [CrossRef] [Google Scholar]
- P. Didier, C. Van Hoorickx, E.P. Reynders: Numerical study of the accuracy and reproducibility of sound absorption measurements in reverberation rooms at low frequencies. Applied Acoustics 200 (2022) 109047. [CrossRef] [Google Scholar]
- M. Hodgson: Experimental evaluation of the accuracy of the Sabine and Eyring theories in the case of non-low surface absorption. Journal of the Acoustical Society of America 94, 2 (1993) 835–840. [CrossRef] [Google Scholar]
- S. Bistafa, J. Radley: Predicting reverberation times in a simulated classroom. Journal of the Acoustical Society of America 108, 4 (2000) 1721–1731. [CrossRef] [PubMed] [Google Scholar]
- Y. Takahashi, T. Otsuru, R. Tomiku: In situ measurements of surface impedance and absorption coefficients of porous materials using two microphones and ambient noise. Applied Acoustics 66, 7 (2005) 845–865. [CrossRef] [Google Scholar]
- T. Otsuru, R. Tomiku, N.B.C. Din, N. Okamoto, M. Murakami: Ensemble averaged surface normal impedance of material using an in-situ technique: Preliminary study using boundary element method. Journal of the Acoustical Society of America 125, 6 (2009) 3784–3791. [CrossRef] [PubMed] [Google Scholar]
- M. Tamura, J.-F. Allard, D. Lafarge: Spatial Fourier-transform method for measuring reflection coefficients at oblique incidence. II. Experimental results. Journal of the Acoustical Society of America 97, 4 (1995) 2255–2262. [CrossRef] [Google Scholar]
- J. Ducourneau, V. Planeau, J. Chatillon, A. Nejade: Measurement of sound absorption coefficients of flat surfaces in a workshop. Applied Acoustics 70, 5 (2009) 710–721. [CrossRef] [Google Scholar]
- J. Rathsam, B. Rafaely: Analysis of absorption in situ with a spherical microphone array. Applied Acoustics 89, 3 (2015) 273–280. [CrossRef] [Google Scholar]
- A. Richard, E. Fernandez-Grande, J. Brunskog, C.-H. Jeong: Estimation of surface impedance at oblique incidence based on sparse array processing. Journal of the Acoustical Society of America 141, 6 (2017) 4115–4125. [CrossRef] [PubMed] [Google Scholar]
- S. Dupont, M. Melon, A. Berry: Characterization of acoustic material at oblique incidence using a spherical microphone array. Journal of the Acoustical Society of America 147, 5 (2020) 3613–3625. [CrossRef] [PubMed] [Google Scholar]
- M. Ottink, J. Brunskog, C.-H. Jeong, E. Fernandez-Grande, P. Trojgaard, E. Tiana-Roig: In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers. Journal of the Acoustical Society of America 139, 1 (2016) 41–52. [CrossRef] [PubMed] [Google Scholar]
- J. Hald, W. Song, K. Haddad, C.-H. Jeong, A. Richard: In-situ impedance and absorption coefficient measurements using a double-layer microphone array. Applied Acoustics 143 (2019) 74–83. [CrossRef] [Google Scholar]
- M. Nolan, S.A. Verburg, J. Brunskog, E. Fernandez-Grande: Experimental characterization of the sound field in a reverberation room. Journal of the Acoustical Society of America 145, 4 (2019) 2237–2246. [CrossRef] [PubMed] [Google Scholar]
- M. Nolan: Estimation of angle-dependent absorption coefficients from spatially distributed in situ measurements. Journal of the Acoustical Society of America 147, 2 (2020) EL119–EL124. [CrossRef] [PubMed] [Google Scholar]
- C.-H. Jeong: Converting Sabine absorption coefficients to random incidence absorption coefficients. Journal of the Acoustical Society of America 133, 6 (2013) 3951–3962. [CrossRef] [PubMed] [Google Scholar]
- C.-H. Jeong: Non-uniform sound intensity distributions when measuring absorption coefficients in reverberation chambers using a phased beam tracing. Journal of the Acoustical Society of America 127, 6 (2010) 3560–3568. [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, Z. Kuang, M. Wu, J. Yang: In-situ measurement of sound absorbing properties using plane-wave sound field reproduced by virtual loudspeaker array. Building and Environment 94 (2015) 883–890. [CrossRef] [Google Scholar]
- S. Dupont, M. Sanalatii, M. Melon, O. Robin, A. Berry, J.-C. Le Roux: Characterization of acoustic materials at arbitrary incidence angle using sound field synthesis. Acta Acustica 6 (2022) 61. [CrossRef] [EDP Sciences] [Google Scholar]
- O. Robin, A. Berry, O. Doutres, N. Atalla, Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field. Journal of the Acoustical Society of America 136, 1 (2014) EL13–EL19. [CrossRef] [PubMed] [Google Scholar]
- O. Robin, A. Berry, C.K. Amédin, N. Atalla, O. Doutres, F. Sgard: Laboratory and in situ sound absorption measurement under a synthetized diffuse acoustic field. Building Acoustics 26, 4 (2019) 223–242. [CrossRef] [Google Scholar]
- J.F. Allard, B. Sieben: Measurements of acoustic impedance in a free field with two microphones and a spectrum analyzer. Journal of the Acoustical Society of America 77, 4 (1985) 1617–1618. [CrossRef] [Google Scholar]
- E. Paris: On the coefficient of sound-absorption measured by the reverberation method. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5, 29 (1928) 489–497. [CrossRef] [Google Scholar]
- Y. Makita, T. Hidaka: Revision of the cos theta law of oblique incident sound energy and modification of the fundamental formulations in geometrical acoustics in accordance with the revised law. Acustica 63, 3 (1987) 163–173. [Google Scholar]
- C.-H. Jeong: A correction of random incidence absorption coefficients for the angular distribution of acoustic energy under measurement conditions. Journal of the Acoustical Society of America 125, 4 (2009) 2064–2071. [CrossRef] [PubMed] [Google Scholar]
- M. Aretz, M. Vorländer: Efficient modelling of absorbing boundaries in room acoustic FE simulation. Acta Acustica united with Acustica 96, 6 (2010) 1042–1050. [CrossRef] [Google Scholar]
- J. Allard, N. Atalla: Propagation of sound in porous media: modelling sound absorbing materials 2e. John Wiley & Sons, 2009. [CrossRef] [Google Scholar]
- P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Blackdy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020) 261–272. [CrossRef] [Google Scholar]
- C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E. Oliphant: Array programming with NumPy. Nature 585, 7825 (2020) 357–362. [NASA ADS] [CrossRef] [Google Scholar]
- S.A. Yori: Method for calculating the sound absorption coefficient for a variable range of incidence angles. Archives of Acoustics 45, 1 (2020) 67–75. [Google Scholar]
- J.-C. Le Roux, J.-P. Dalmont, N. Poulain: A new device for fluid equivalent parameters assessment, in Symposium on the Acoustics of Poro-Elastic Materials (SAPEM), March 29th–April 2nd, 2021, Purdue University, West Lafayette (Indiana), USA, 2021. [Google Scholar]
- R. Panneton, X. Olny: Acoustical determination of the parameters governing viscous dissipation in porous media. Journal of the Acoustical Society of America 119, 4 (2006) 2027–2040. [CrossRef] [PubMed] [Google Scholar]
- X. Olny, R. Panneton; Acoustical determination of the parameters governing thermal dissipation in porous media. Journal of the Acoustical Society of America 123, 2 (2008) 814–824. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.