Open Access
Acta Acust.
Volume 7, 2023
Article Number 30
Number of page(s) 11
Section Ultrasonics
Published online 26 June 2023
  1. J. Kim, S. Kasoji, P.G. Durham, P.A. Dayton: Acoustic hologram lens made of nanoparticle-epoxy composite molding for directing predefined therapeutic ultrasound beams, in 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 2022, pp. 1–4. [Google Scholar]
  2. S. Jimenez-Gambin, N. Jimenez, JM. Benlloch, F. Camarena: Holograms to focus arbitrary ultrasonic fields through the skull. Physical Review Applied 12, 1 (2019) 014016. [CrossRef] [Google Scholar]
  3. H. Ahmed, S. Ghosh, T. Sain, S. Banerjee: Hybrid Bessel beam and metamaterial lenses for deep laparoscopic nondestructive evaluation. Journal of Applied Physics 129, 16 (2021) 165107. [CrossRef] [Google Scholar]
  4. T. Yang, Y. Jin, T.-Y. Choi, N. Dahotre, A. Neogi; Mechanically tunable ultrasonic metamaterial lens with a subwavelength resolution at long working distances for bioimaging. Smart Materials and Structures 30, 1 (2021) 015022. [CrossRef] [Google Scholar]
  5. Y. Jin, R. Kumar, O. Poncelet, O. Mondain-Monval, T. Brunet: Flat acoustics with soft gradient-index metasurfaces. Nature Communications 10 (2019) 143. [CrossRef] [PubMed] [Google Scholar]
  6. H. Gao, X. Fang, Z. Gu, T. Liu, S. Liang, Y. Li, J. Zhu: Conformally mapped multifunctional acoustic metamaterial lens for spectral sound guiding and Talbot effect. Research (Wash DC) 2019 (2019) 1748537. [Google Scholar]
  7. Kun Li, Bin Liang, Jing Yang, Jun Yang, Jian-chun Cheng: Broadband transmission-type coding metamaterial for wavefront manipulation for airborne sound. Applied Physics Express 11, 7 (2018) 077301. [CrossRef] [Google Scholar]
  8. C. Shen, X. Jun, N.X. Fang, Y. Jing: Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Physical Review X 4, 4 (2014) 041033. [CrossRef] [Google Scholar]
  9. F. Semperlotti, H. Zhu: Achieving selective interrogation and sub-wavelength resolution in thin plates with embedded metamaterial acoustic lenses. Journal of Applied Physics 116, 5 (2014) 054906. [CrossRef] [Google Scholar]
  10. S. Yaacoubi, P. McKeon, W. Ke, N.F. Declercq, F. Dahmene: Towards an ultrasonic guided wave procedure for health monitoring of composite vessels: application to hydrogen-powered aircraft. Materials 10, 9 (2017) 1097. [CrossRef] [PubMed] [Google Scholar]
  11. M. Veidt, W. Sachse: Ultrasonic evaluation of thin, fiber-reinforced laminates. Journal of Composite Materials 28, 4 (1994) 329–342. [CrossRef] [Google Scholar]
  12. W.P. Rogers: Elastic property measurement using Rayleigh-Lamb waves. Research in Nondestructive Evaluation 6, 4 (1995) 185–208. [CrossRef] [Google Scholar]
  13. P.B. Nagy, A. Jungman, L. Adler: Measurements of backscattered leaky Lamb waves in composite plates. Materials Evaluation 46, 1 (1988) 97–100. [Google Scholar]
  14. S. Eckel, F. Meraghni, P. Pomarede, N.F. Declercq: Investigation of damage in composites using nondestructive nonlinear acoustic spectroscopy. Experimental Mechanics 57 (2017) 207-17. [CrossRef] [Google Scholar]
  15. D.E. Chimenti, J. Song: Performance of spherically focused air-coupled ultrasonictransducers. AIP Conference Proceedings 894 (2007) 862. [CrossRef] [Google Scholar]
  16. S.D. Holland, S.V. Teles, D.E. Chimenti: Quantitative air-coupled ultrasonic materials characterization with highly focussed acoustic beams. Review of Progress in Quantitative Nondestructive Evaluation 23a and 23b (2004) 1376–1381. [CrossRef] [Google Scholar]
  17. D. Fei, D.E. Chimenti, S.V. Teles: Material property estimation in thin plates using focused, synthetic-aperture acoustic beams. Journal of the Acoustical Society of America 113, 5 (2003) 2599–2610. [CrossRef] [PubMed] [Google Scholar]
  18. D.E. Chimenti, S.D. Holland, D. Fei: Air-coupled ultrasound and rapid elastic property characterization using focused acoustic beams. 2003 IEEE Ultrasonics Symposium Proceedings 1 and 2 (2003) 266–275. [CrossRef] [Google Scholar]
  19. S.D. Holland, S.V. Teles, D.E. Chimenti: Air-coupled, focused ultrasonic dispersion spectrum reconstruction in plates. Journal of the Acoustical Society of America 115, 6 (2004) 2866–2872. [CrossRef] [Google Scholar]
  20. A.H. Nayfeh, D. E. Chimenti: Propagation of guided waves in fluid-coupled plates of fiber-reinforced composite. Journal of the Acoustical Society of America 83, 5 (1988) 1736–1743. [CrossRef] [Google Scholar]
  21. W. Sachse, Y.H. Pao: Determination of phase and group velocities of dispersive waves in solids. Journal of Applied Physics 49, 8 (1978) 4320–4327. [CrossRef] [Google Scholar]
  22. M. Deschamps, B. Hosten: The effects of viscoelasticity on the reflection and transmission of ultrasonic-waves by an orthotropic plate. Journal of the Acoustical Society of America 91, 4 (1992) 2007–2015. [CrossRef] [PubMed] [Google Scholar]
  23. R.L. Weaver, W. Sachse, L. Niu: Transient ultrasonic-waves in a viscoelastic plate – applications to materials characterization. Journal of the Acoustical Society of America 85, 6 (1989) 2262–2267. [CrossRef] [Google Scholar]
  24. L. Satyanarayan, JM. Vander Weide, N.F. Declercq: Ultrasonic polar scan imaging of damaged fiber-reinforced composites, Materials Evaluation 68, 6 (2010) 733–739. [Google Scholar]
  25. R. Raišutis, O. Tumšys: Application of dual focused ultrasonic phased array transducer in two orthogonal cross-sections for inspection of multi-layered composite components of the aircraft fuselage. Materials (Basel) 13, 7 (2020) 1689. [CrossRef] [PubMed] [Google Scholar]
  26. D. Hopkins, M. Datuin, M. Brassard: Challenges and solutions for ultrasonic phased-array inspection of polymer-matrix composites at production rates, in 45th Annual Review of Progress in Quantitative Nondestructive Evaluation vol. 38, AIP Conference Proceedings 2102, UNSP 100002-1, 2019. [Google Scholar]
  27. D.W. Schindel: Ultrasonic imaging of solid surfaces using a focussed air-coupled capacitance transducer. Ultrasonics 35, 8 (1998) 587–594. [CrossRef] [Google Scholar]
  28. D.E. Chimenti, D. Fei: Scattering coefficient reconstruction in plates using focused acoustic beams. International Journal of Solids and Structures 39, 21–22 (2002) 5495–5513. [CrossRef] [Google Scholar]
  29. V.M. Levin, O.I. Lobkis, R.G. Maev: Investigation of the spatial structure of acoustic fields by a spherical focusing transducer. Soviet Physics Acoustics-USSR 36, 4 (1990) 391–395. [Google Scholar]
  30. B. Hosten, D.A. Hutchins, D.W. Schindel: Measurement of elastic constants in composite materials using air-coupled ultrasonic bulk waves. Journal of the Acoustical Society of America 99, 4 (1996) 2116–2123. [CrossRef] [Google Scholar]
  31. A. Safaeinili, O.I. Lobkis, D.E. Chimenti: Air-coupled ultrasonic estimation of viscoelastic stiffnesses in plates. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 43, 6 (1996) 1171–1180. [CrossRef] [Google Scholar]
  32. N. Miqoi, P. Pomarede, N.F. Declercq, L. Guillaumat, G. Le Coz, S. Delalande, F. Meraghni: Detection and evaluation of barely visible impact damage in woven glass fabric reinforced polyamide 6.6/6 using ultrasonic imaging, X-ray tomography and optical profilometry. International Journal of Damage Mechanics 30 (2020) 323–348. [Google Scholar]
  33. P. Pomarède, L. Chehami, N.F. Declercq, F. Meraghni, J. Dong, A. Locquet, D.S. Citrin: Application of ultrasonic coda wave interferometry for micro-cracks monitoring in woven fabric composites. Journal of Nondestructive Evaluation, Springer Verlag 38, 1 (2019) 26–34. [CrossRef] [Google Scholar]
  34. J. Dong, P. Pomarede, L. Chehami, A. Locquet, F. Meraghni, N.F. Declercq, D.S. Citrin: Visualization of subsurface damage in woven carbon fiber-reinforced composites using polarization-sensitive terahertz imaging. NDT and E International 99 (2018) 72–79. [CrossRef] [Google Scholar]
  35. P. Pomarède, F. Meraghni, L. Peltier, S. Delalande, N.F. Declercq: Damage evaluation in woven glass reinforced polyamide 6.6/6 composites using ultrasound phase-shift analysis and X-Ray tomography. Journal of Nondestructive Evaluation 73, 12 (2018) 1–21. [Google Scholar]
  36. A.-U. Rehman, C. Potel, J.-F. de Belleval: Numerical modeling of the effects on reflected acoustic field for the changes in internal layer orientation of a composite. Ultrasonics 36 (1998) 343–348. [CrossRef] [Google Scholar]
  37. C. Koch: Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones. Ultrasonics Sonochemistry 29 (2016) 439–446. [CrossRef] [PubMed] [Google Scholar]
  38. C. Koch, K.-V. Jenderka: Measurement of sound field in cavitating media by an optical fibre-tip hydrophone. Ultrasonics Sonochemistry 15, 4 (2008) 502–509. [CrossRef] [PubMed] [Google Scholar]
  39. J. Petelin, Z. Lokar, D. Horvat, R. Petkovsek: Localized measurement of a sub-nanosecond shockwave pressure rise time. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 69, 1 (2022) 369–376. [CrossRef] [PubMed] [Google Scholar]
  40. L. Jia, S. Chen, B. Xue, H. Wu, K. Zhang, X. Yang, Z. Zeng: Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction. Proceedings of SPIE 10621 (2017) 75–84. [Google Scholar]
  41. M.G. Moharam, L. Young: Criterion for Bragg and Raman-Nath diffraction regimes, Applied Optics 17, 11 (1978) 1757–1759. [CrossRef] [PubMed] [Google Scholar]
  42. A. Korpel: Visualization of cross section of a sound beam by Bragg diffraction of light. Applied Physics Letters 9, 12 (1966) 425–427. [CrossRef] [Google Scholar]
  43. A. Korpel: Proceedings of the Second International Symposium on Acoustical Holography. Plenum, London, England, 1970, p. 39. [CrossRef] [Google Scholar]
  44. A. Korpel: Acousto-Optics, 2nd ed. (Marcel Dekker Inc, New York, 1997, p. 21–22, 206–219. [Google Scholar]
  45. K. Vandenabeele, M.A. Breazeale, O. Leroy, J.K. Na: Strong Interaction of arbitrary fields of sound and light – application to higher order Bragg Imaging. Journal of Applied Physics 75, 1 (1994) 84–95. [CrossRef] [Google Scholar]
  46. J.K. Na, M.A. Breazeale, O. Leroy: Ultrasonic Bragg imaging of flaws, Journal of the Acoustical Society of America 81, Suppl. 1 (1987) S43–S43. [Google Scholar]
  47. L.H.V. Wang: Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography. Disease Markers 19, 2–3 (2003) 123–138. [Google Scholar]
  48. A. Teklu, N.F. Declercq, M. McPherson: Acousto-optic Bragg imaging of biological tissue. Journal of the Acoustical Society of America 136, 2 (2014) 634–637. [CrossRef] [PubMed] [Google Scholar]
  49. N.F. Declercq, M.S. McPherson, M.A. Breazeale, A.A. Teklu: Optical Bragg imaging of acoustic fields after reflection. Journal of the Acoustical Society of America 127, 6 (2010) 3466–3469. [CrossRef] [PubMed] [Google Scholar]
  50. NF Declercq, A. Teklu, M.A. Breazeale, R.D. Hasse, J. Degrieck, O. Leroy: Detection of fiber direction in composites by means of high frequency wide bounded ultrasonic beam and Schlieren photography. Research in Nondestructive Evaluation 16, 2 (2005) 55–64. [CrossRef] [Google Scholar]
  51. G. Cammi, A. Spinelli, F. Cozzi, A. Guardone: Automatic detection of oblique shocks and simple waves in Schlieren images of two-dimensional supersonic steady flows. Measurement 168 (2021) 108260. [CrossRef] [Google Scholar]
  52. H.D. Lim, X.F. Wei, B. Zang, U.S. Vevek, R. Mariani, T.H. New, Y.D. Cui: Short-time proper orthogonal decomposition of time-resolved Schlieren images for transient jet screech characterization. Aerospace Science and Technology 107 (2020) 106276. [CrossRef] [Google Scholar]
  53. E. Lampsijärvi, J. Heikkilä, I. Kassamakov, A. Salmi, E. Hæggström: Calibrated quantitative stroboscopic Schlieren imaging of ultrasound in air, in IEEE International Ultrasonics Symposium (IUS), Glasgow, UK 2019 (2019) 1651–1654. [Google Scholar]
  54. Z. Xu, H. Chen, X. Yan, M.L. Qian, Q. Cheng: Three-dimensional reconstruction of nonplanar ultrasound fields using Radon transform and the Schlieren imaging method. Journal of the Acoustical Society of America 142 (2017). EL82–EL88. [CrossRef] [PubMed] [Google Scholar]
  55. G. Caliano, A.S. Savoia, A. Iula: An automatic compact Schlieren imaging system for ultrasound transducer testing. IEEE Transactions on Ultrasonics Ferroelectric and Frequency Control 59, 9 (2012) 2102–2110. [Google Scholar]
  56. M. Ohno, N. Tanaka, Y. Matsuzaki: Schlieren imaging by the interference of two beams in Raman-Nath diffraction. Japanese Journal of Applied Physics 42, 5b (2003) 3067–3071. [CrossRef] [Google Scholar]
  57. N.F. Declercq, R. Briers, J. Degrieck, O. Leroy: The history and properties of ultrasonic inhomogeneous waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52, 5 (2005) 776–791. [CrossRef] [PubMed] [Google Scholar]
  58. A.H. Naefeh: Wave propagation in layered anisotropic media with applications to composites, in North Holland series in Applied Mathematics and Mechanics, 1995. [Google Scholar]
  59. S.I. Rokhlin, W. Wang: Double through-transmission bulk wave method for ultrasonic phase-velocity measurement and determination of elastic-constants of composite-materials. Journal of the Acoustical Society of America 91, 6 (1992) 3303–3312. [CrossRef] [Google Scholar]
  60. B. Hosten, M. Deschamps, B.R. Tittmann: Inhomogeneous wave generation and propagation in lossy anisotropic solids – application to the characterization of viscoelastic composite-materials. Journal of the Acoustical Society of America 82, 5 (1987) 1763–1770. [CrossRef] [Google Scholar]
  61. O.I. Lobkis, D.E. Chimenti, H. Zhang: In-plane elastic property characterization in composite plates. Journal of the Acoustical Society of America 107, 4 (2000) 1852–1858. [CrossRef] [PubMed] [Google Scholar]
  62. M. Deschamps, B. Hosten: The effects of viscoelasticiy on the reflection and transmission of ultrasonic waves by an orthotropic plate. Journal of the Acoustical Society of America 91, 4 (1992) 2007–2015. [CrossRef] [PubMed] [Google Scholar]
  63. N.F. Declercq: Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves. Ultrasonics 54, 2 (2013) 609–613. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.