Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 62
Number of page(s) 14
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2023050
Published online 30 November 2023
  1. A.W. Goodwin: An acoustical study of individual voices in choral blend. Journal of Research in Music Education 28, 2 (1980) 119–128. [CrossRef] [Google Scholar]
  2. R.A. Kendall, E.C. Carterette: Identification and blend of timbres as a basis for orchestration. Contemporary Music Review 9, 1–2 (1993) 51–67. [CrossRef] [Google Scholar]
  3. G.J. Sandell: Roles for spectral centroid and other factors in determining “blended” instrument pairings in orchestration. Music Perception 13, 2 (1995) 209–246. [CrossRef] [Google Scholar]
  4. S.A. Lembke, S. Levine, S. Mcadams: Blending between bassoon and horn players: An analysis of timbral adjustments during musical performance. Music Perception: An Interdisciplinary Journal 35 (2017) 144–164. [CrossRef] [Google Scholar]
  5. M. De Francisco, M. Kob, J.F. Rivest, C. Traube: ODESSA – orchestral distribution effects in sound, space and acoustics: an interdisciplinary symphonic recording for the study of orchestral sound blending, in: Proceedings of International Symposium on Musical Acoustics (ISMA), 13–17 November 2019, Detmold, Germany, 2019, pp. 33–41. [Google Scholar]
  6. S. Ioannou, M. Kob: Investigation of the blending of sound in a string ensemble, in: Proceedings of International Symposium on Musical Acoustics (ISMA), 13–17 November 2019, Detmold, Germany, 2019, pp. 42–49. [Google Scholar]
  7. J. Thilakan, M. Kob: Evaluation of subjective impression of instrument blending in a string ensemble, in: Fortschritte der Akustik – DAGA 2021, 15–18 August 2021, Vienna, Austria, 2021, pp. 524–527. [Google Scholar]
  8. J. Thilakan, O.C. Gomes, M. Kob: The influence of room acoustic parameters on the impression of orchestral blending, in: Proceedings of Euronoise 2021, 25–27 October 2021, Madeira, Portugal/Online, 2021. [Google Scholar]
  9. S.A. Lembke, S. Mcadams: The role of spectral-envelope characteristics in perceptual blending of wind-instrument sounds. Acta Acustica united with Acustica 101, 5 (2015) 1039–1051. [CrossRef] [Google Scholar]
  10. S.A. Lembke, K. Parker, E. Narmour, S. Mcadams: Acoustical correlates of perceptual blend in timbre dyads and triads. Musicae Scientiae 23, 2 (2019) 250–274. [CrossRef] [Google Scholar]
  11. A.S. Bregman: Auditory scene analysis: the perceptual organization of sound, The MIT Press, Cambridge MA, 1990. [CrossRef] [Google Scholar]
  12. S. Ternström: Preferred self-to-other ratios in choir singing. Journal of the Acoustical Society of America 105, 6 (1999) 3563–3574. [CrossRef] [PubMed] [Google Scholar]
  13. J. Daugherty: Choir spacing and formation: choral sound preferences in random, synergistic, and gender-specific chamber choir placements. International Journal of Research in Choral Singing 1, 1 (2003) 48–59. [Google Scholar]
  14. W. Goebl, C. Palmer: Synchronization of timing and motion among performing musicians. Music Perception 26, 5 (2009) 427–438. [CrossRef] [Google Scholar]
  15. S. Bolzinger, O. Warusfel, E. Kahle: A study of the influence of room acoustics on piano performance. Le Journal de Physique IV 4, C5 (1994) 617–620. [Google Scholar]
  16. Z.S. Kalkandjiev, S. Weinzierl: The influence of room acoustics on solo music performance: an experimental study. Psychomusicology: Music, Mind and Brain 25, 3 (2015) 195–207. [CrossRef] [Google Scholar]
  17. S.V.A. Garí, M. Kob, T. Lokki: Analysis of trumpet performance adjustments due to room acoustics, in: Proceedings of International Symposium on Room Acoustics (ISRA) 2019, 15–17 September 2019, Amsterdam, Netherlands, 2019. [Google Scholar]
  18. P.F. Assmann, Q. Summerfield: Modeling the perception of concurrent vowels: vowels with different fundamental frequencies. Journal of the Acoustical Society of America 88, 2 (1990) 680–697. [CrossRef] [PubMed] [Google Scholar]
  19. A. de Cheveigné, H. Kawahara, M. Tsuzaki, K. Aikawa: Concurrent vowel identification. I. Effects of relative amplitude and F0 difference. Journal of the Acoustical Society of America 101, 5 (1997) 2839–2847. [CrossRef] [Google Scholar]
  20. R.A. Rasch: Synchronization in performed ensemble music. Acustica 43, 2 (1979) 121–131. [Google Scholar]
  21. https://www.dpamicrophones.com/instrument/4099-instrument-microphone. [Google Scholar]
  22. D.R. Soderquist: Frequency analysis and the critical band. Psychonomic Science 21, 2 (1970) 117–119. [CrossRef] [Google Scholar]
  23. B.C.J. Moore: An introduction to the psychology of hearing, Elsevier Ltd, London, 2004. [Google Scholar]
  24. L.J. Cronbach: Coefficient alpha and the internal structure of tests. Psychometrika 16, 3 (1951) 297–334. [CrossRef] [Google Scholar]
  25. J. Thilakan, B. BT, J. Chen, M. Kob: Sound samples for the evaluation of source-level blending between violins (Version 1.1) [Audio data set]. Zenodo. Available at: https://doi.org/10.5281/zenodo.8278236. [Google Scholar]
  26. S.S. Stevens, J. Volkmann, E.B. Newman: A scale for the measurement of the psychological magnitude pitch. Journal of the Acoustical Society of America 8, 3 (1937) 185–190. [CrossRef] [Google Scholar]
  27. S. Davis, P. Mermelstein: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech and Signal Processing 28 (1980) 357–366. [CrossRef] [Google Scholar]
  28. A. Winursito, R. Hidayat, A. Bejo: Improvement of MFCC feature extraction accuracy using PCA in Indonesian speech recognition, in: International Conference on Information and Communications Technology (ICOIACT), IEEE, 2018, pp. 379–383. [Google Scholar]
  29. L. Muda, M. Begam, I. Elamvazuthi: Voice recognition algorithms using Mel frequency cepstral coefficient (MFCC) and dynamic timewarping (DTW) techniques, 2010. arxiv:1003.4083. [Google Scholar]
  30. S.H. Chen, Y.R. Luo: Speaker verification using MFCC and support vector machine, in: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS) 2009, vol. 1, 18–20 March 2009, Hong Kong, 2009, pp. 18–20. [Google Scholar]
  31. B. Logan: Mel frequency cepstral coefficients for music modeling, in: Proceedings of International Symposium on Music Information Retrieval (Music IR) 2000, vol. 270, no. 1, 23–25 October 2000, Massachusetts, USA, 2000. [Google Scholar]
  32. R. Loughran, J. Walker, M. O’Neill, M. O’Farrell: The use of Mel-frequency cepstral coefficients in musical instrument identification, in: Proceedings of International Computer Music Conference Proceedings (ICMA) 2008, 24–29 August 2008, Belfast, Ireland, 2008. [Google Scholar]
  33. M. Gilke, P. Kachare, R. Kothalikar, V.P. Rodrigues, M. Pednekar. MFCC-based vocal emotion recognition using ANN, in: Proceedings of International Conference on Electronics Engineering and Informatics (ICEEI) 2012, vol. 49, 1–2 September 2012, Phuket, Thailand, 2012, pp. 150–154. [Google Scholar]
  34. S. Rajesh, N.J. Nalini: Musical instrument emotion recognition using deep recurrent neural network. Procedia Computer Science 167 (2020) 16–25. [CrossRef] [Google Scholar]
  35. A.B. Kandali, A. Routray, T.K. Basu: Emotion recognition from Assamese speeches using MFCC features and GMM classifier, in: TENCON 2008–2008 IEEE Region 10 Conference, IEEE, 2008, pp. 1–5. [Google Scholar]
  36. C. Richter, N.H, Feldman, H. Salgado, A. Jansen: A framework for evaluating speech representations, in: Proceedings of the Annual Conference of the Cognitive Science Society, 2016. [Google Scholar]
  37. F. Anowar, S. Sadaoui, B. Selim: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review 40 (2021) 100378. [CrossRef] [Google Scholar]
  38. S. Dupont, T. Ravet, C. Picard-Limpens, C. Frisson: Nonlinear dimensionality reduction approaches applied to music and textural sounds, in: Proceedings of International Conference on Multimedia and Expo (ICME), IEEE, 2013, 1–6. [Google Scholar]
  39. H. Hotelling: Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 6 (1933) 417. [CrossRef] [Google Scholar]
  40. L. Van Der Maaten, E.O. Postma, H.J. Van den Herik: Dimensionality reduction: a comparative review. Journal of Machine Learning Research 10 (2009) 66–71. [Google Scholar]
  41. C. Ittichaichareon, S. Suksri, T. Yingthawornsuk: Speech recognition using MFCC, in: Proceedings of International Conference on Computer Graphics, Simulation and Modeling (ICGSM) 2012, vol. 9, 28–29 July 2012, Pattaya, Thailand, 2012. [Google Scholar]
  42. A. Tharwat, T. Gaber, A. Ibrahim, A.E. Hassanien: Linear discriminant analysis: a detailed tutorial. AI Communications 30, 2 (2017) 169–190. [CrossRef] [Google Scholar]
  43. J. Ye, T. Xiong, D. Madigan: Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. Journal of Machine Learning Research 7, 7 (2006) 1183–1204. [Google Scholar]
  44. L. Van Der Maaten, G. Hinton: Visualizing data using t-SNE. Journal of Machine Learning Research 9 (2008) 2579–2605. [Google Scholar]
  45. K.L. Elmore, M.B. Richman. Euclidean distance as a similarity metric for principal component analysis. Monthly Weather Review 129, 3 (2001) 540–549. [CrossRef] [Google Scholar]
  46. M.K. Singh, N. Singh, A.K. Singh: Speaker’s voice characteristics and similarity measurement using Euclidean distances, in: Proceedings of International Conference on Signal Processing and Communication (ICSC), IEEE, 2019, pp. 317–322. [Google Scholar]
  47. H.B. Mann, D.R. Whitney: On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 1 (1947) 50–60. [Google Scholar]
  48. D. Perna, A. Tagarelli: Deep auscultation: predicting respiratory anomalies and diseases via recurrent neural networks, in: Proceedings of 32nd International Symposium on Computer-Based Medical Systems (CBMS), IEEE, 2019. [Google Scholar]
  49. S.F. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A.C. Loui, J. Luo: Large-scale multimodal semantic concept detection for consumer video, in: Proceedings of the 9th ACM SIGMM International Workshop on Workshop on Multimedia Information Retrieval (MIR 2007), 24–29 September 2007, Bavaria, Germany, 2007, pp. 255–264. [Google Scholar]
  50. H. Terasawa, J. Berger, S. Makino: In search of a perceptual metric for timbre: dissimilarity judgments among synthetic sounds with MFCC-derived spectral envelopes. Journal of the Audio Engineering Society 60, 9 (2012) 674–685. [Google Scholar]
  51. K. Siedenburg, I. Fujinaga, S. McAdams: A comparison of approaches to timbre descriptors in music information retrieval and music psychology. Journal of New Music Research 45, 1 (2016) 27–41. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.