Topical Issue - CFA 2022
Open Access
Review
Issue
Acta Acust.
Volume 9, 2025
Topical Issue - CFA 2022
Article Number 24
Number of page(s) 11
DOI https://doi.org/10.1051/aacus/2024086
Published online 27 March 2025
  1. H.Bai, Z.Zhan, J.Liu, Z.Ren: From local structure to overall performance: an overview on the design of an acoustic coating. Materials 12 (2019) 2509 [Google Scholar]
  2. Z.Zhang, Y.Zhao, N.Gao: Recent study progress of underwater sound absorption coating. Engineering Reports 5 (2023) e12627 [Google Scholar]
  3. J.Zhang, B.Hu, S.Wang: Review and perspective on acoustic metamaterials: from fundamentals to applications. Applied Physics Letters 123 (2023) 010502 [Google Scholar]
  4. C.Audoly: Global characterization of acoustic panels at normal incidence for underwater applications. Acustica 76 (1992) 129–136 [Google Scholar]
  5. C.Audoly: Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements, in: Proceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 2012, pp. 3206–3209 [Google Scholar]
  6. M.Tran-Van-Nhieu, M.Pham Thi, L.Divay, G.Maze, D.Décultot, F.Léon, F.Chati, R.Lardat, A.-C.Hladky, C.Croenne, B.Dubus: Scattering from a finite ribbed plate with attached oscillators. Journal of the Acoustical Society of America 144 (2018) 785–795 [Google Scholar]
  7. J.M.Cuschieri: The modeling of the radiation and response Green's function of a fluid-loaded cylindrical shell with an external compliant layer. Journal of the Acoustical Society of America 119 (2006) 2150–2169 [Google Scholar]
  8. G.C.Gaunaurd: Sonar cross section of a coated hollow cylinder in water. Journal of the Acoustical Society of America 61 (1977) 360–368 [Google Scholar]
  9. J.S.Sastry, M.L.Munjal: Response of a multi-layered infinite cylinder to a plane wave excitation by means of transfer matrices. Journal of Sound and Vibration 209 (1998) 99–121 [Google Scholar]
  10. F.G.Mitri: Acoustic radiation force due to incident plane-progressive waves on coated cylindrical shells immersed in ideal compressible fluids. Wave Motion 43 (2006) 445–457 [Google Scholar]
  11. G.S.Sharma, A.Marsick, L.Maxit, A.Skvortsov, I.MacGillivray, N.Kessissoglou: Acoustic radiation from a cylindrical shell with a voided soft elastic coating. Journal of the Acoustical Society of America 150 (2021) 4308–4314 [Google Scholar]
  12. C.Lin, G.S.Sharma, D.Eggler, L.Maxit, A.Skvortsov, I.MacGillivray, N.Kessissoglou: Sound radiation from a cylindrical shell with a multilayered resonant coating. International Journal of Mechanical Sciences 232 (2022) 107479 [Google Scholar]
  13. A.M.Baird, F.H.Kerr, D.J.Townend: Wave propagation in a viscoelastic medium containing fluid-filled microspheres. Journal of the Acoustical Society of America 105 (1999) 1527–1538 [Google Scholar]
  14. G.T.Kuster, M.N.Toksöz: Velocity and attenuation of seismic waves in a two-phase media. Geophysics 39 (1974) 587–606 [CrossRef] [Google Scholar]
  15. S.Beretti: Réponse acoustique d’élastomères micro-inclusionnaires soumis à la pression d’immersion. 10ème Congrès Français d’Acoustique, Lyon, France, 2010. https://hal.science/hal-00546839/hal-00546839. [Google Scholar]
  16. R.DePascalis, D.Abrahams, W.J.Parnell: Predicting the pressure-volume curve of an elastic microsphere composite. Journal of the Mechanics and Physics of Solids 61 (2013) 1106–1123 [Google Scholar]
  17. M.E.Curd, N.F.Morrison, M.J.A.Smith, P.Gajjar, Z.Yousaf, W.J.Parnell: Geometrical and mechanical characterisation of hollow thermoplastic microspheres for syntactic foam applications. Composites Part B: Engineering 223 (2021) 108952 [Google Scholar]
  18. G.Lepert, C.Aristégui, O.Poncelet, T.Brunet, C.Audoly, P.Parneix: Determination of the effective mechanical properties of inclusionary materials using bulk elastic waves. Journal of Physics: Conference Series 498 (2014) 012007 [Google Scholar]
  19. T.Brunet, A.Merlin, B.Mascaro, K.Zimny, J.Leng, O.Poncelet, C.Aristégui, O.Mondain-Monval: Soft 3d acoustic metamaterial with negative index. Nature Materials 14 (2014) 384–388 [Google Scholar]
  20. R.Radlinski, M.Simon: Scattering by multiple grating of compliant tubes. Journal of the Acoustical Society of America 72 (1982) 607–614 [Google Scholar]
  21. C.Audoly: Etude de barrières acoustiques formées de réseaux d’obstacles résonnants. PhD thesis, Université de Toulon et du Var, 1989 [Google Scholar]
  22. A.C.Hennion, R.Bossut, J.N.Decarpigny, C.Audoly: Analysis of the scattering of a plane wave by a periodic structure using the finite element method – application to compliant tube gratings. Journal of the Acoustical Society of America 87 (1990) 1861–1870 [Google Scholar]
  23. A.-C.Hladky-Hennion, J.N.Decarpigny: Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method – application to Alberich anechoic coatings. Journal of the Acoustical Society of America 90 (1991) 3356–3367 [Google Scholar]
  24. C.Audoly: Acoustic wave scattering from periodic gratings: application to underwater acoustic baffles, in: Undersea Defence Technology Conference, Paris, France, 1991 [Google Scholar]
  25. E.Meyer (Ed.): Sound Absorption and Sound Absorbers in Water. Department of the Navy, Bureau of Ships, NASHIPS 900. Vol. 1, 1950, p. 164 [Google Scholar]
  26. V.Leroy, A.Strybulevych, M.Lanoy, F.Lemoult, A.Tourin, J.H.Page: Superabsorption of acoustic waves with bubble meta-screens. Physical Review B 91 (2015) 020301 [Google Scholar]
  27. V.Leroy, A.Bretagne, M.Fink, H.Willaime, P.Tabeling, A.Tourin: Design and characterization of bubble phononic crystals. Applied Physics Letters 95 (2009) 171904 [CrossRef] [Google Scholar]
  28. M.Thieury, V.Leroy, J.Dassé, A.Tourin: Phenomenological law for the acoustic reflection by an array of cylindrical cavities in a soft elastic medium. Journal of Applied Physics 128 (2020) 35106 [Google Scholar]
  29. G.S.Sharma, A.Skvortsov, I.MacGillivray, N.Kessissoglou: Sound transmission through a periodically voided soft elastic medium submerged in water. Wave Motion 70 (2017) 101–112 [Google Scholar]
  30. G.S.Sharma, A.Skvortsov, I.MacGillivray, N.Kessissoglou: Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing. Journal of the Acoustical Society of America 141 (2017) 4694–4704 [Google Scholar]
  31. D.C.Calvo, A.L.Thangawng, C.N.Layman: Low-frequency resonance of an oblate spheroidal cavity in a soft elastic medium. Journal of the Acoustical Society of America 132 (2012) EL1–EL7 [Google Scholar]
  32. S.M.Ivansson: Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes. Journal of the Acoustical Society of America 124 (2008) 1974–1984 [CrossRef] [PubMed] [Google Scholar]
  33. Z.Liu, M.Sheng: Study on characteristics of sound absorption of underwater visco-elastic coated compound structures. Modern Applied Science 3 (2008) 32–41 [Google Scholar]
  34. J.Zhong, H.Zhao, H.Yang, J.Yin, J.Wen: On the accuracy and optimization application of an axisymmetric simplified model for underwater sound absorption of anechoic coatings. Applied Acoustics 145 (2019) 104–111 [CrossRef] [Google Scholar]
  35. Z.Zhang, L.Li, Y.Huang, Q.Huang: Sound absorption performance of underwater anechoic coating in plane wave normal incidence condition. Materials Science and Engineering 552 (2019) 012001 [Google Scholar]
  36. N.Gao, K.Lu: An underwater metamaterial for broadband acoustic absorption at low frequency. Applied Acoustics 169 (2020) 107500 [Google Scholar]
  37. Z.Wang, Y.Huang, X.Zhang, L.Li, M.Chen, D.Fang: Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb. Journal of Sound and Vibration 479 (2020) 115375 [Google Scholar]
  38. G.S.Sharma, A.Skvortsov, I.MacGillivray, N.Kessissoglou: On superscattering of sound waves by a lattice of disk-shaped cavities in a soft material. Applied Physics Letters 116 (2020) 041602 [Google Scholar]
  39. P.A.Cotterill, D.Nigro, W.J.Parnell: Deeply subwavelength giant monopole elastodynamic metacluster resonators. Proceedings of the Royal Society A 478 (2022) 20220026 [Google Scholar]
  40. S.Wang, B.Hu, Y.Du: Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium. Applied Acoustics 170 (2020) 107501 [Google Scholar]
  41. S.M.Ivansson: Sound absorption by viscoelastic coatings with periodically distributed cavities. Journal of the Acoustical Society of America 119 (2006) 3558–3567 [Google Scholar]
  42. H.Zhao, J.Wen, H.Yang, L.Lv, X.Wen: Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers. Applied Acoustics 76 (2014) 48–51 [Google Scholar]
  43. M.Hinders, B.Rhodes, T.Fang: Particle-loaded composites for acoustic anechoic coatings. Journal of Sound and Vibration 185 (1995) 219–246 [CrossRef] [Google Scholar]
  44. R.-B.Yang, A.K.Mal: Multiple scattering of elastic waves in a fiber-reinforced composite. Journal of the Mechanics and Physics of Solids 42 (1994) 1945–1968 [Google Scholar]
  45. Y.Gu, H.Zhong, B.Bao, Q.Wang, J.Wu: Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption. Applied Acoustics 172 (2021) 107605 [Google Scholar]
  46. P.Méresse, C.Audoly, C.Croënne, A.-C.Hladky-Hennion: Acoustic coatings for maritime systems applications using resonant phenomena. Comptes Rendus Mécanique 343 (2015) 645–655 [Google Scholar]
  47. G. S.Sharma, A.Skvortsov, I.MacGillivray, N.Kessissoglou: Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium. Journal of Sound and Vibration 443 (2019) 652–665 [Google Scholar]
  48. G.Gaunaurd: One dimensional model for acoustic absorption in a viscoeleastic medium containing short cylindrical cavities. Journal of the Acoustical Society of America 62 (1977) 298–307 [Google Scholar]
  49. M.Duranteau, T.Valier-Brasier, J.-M.Conoir, R.Wunenburger: Random acoustic metamaterial with a subwavelength dipolar resonance. Journal of the Acoustical Society of America 139 (2016) 3341–3352 [Google Scholar]
  50. G.Lepert: Etude des interactions élasto-acoustiques dans des métamatériaux formés d’inclusions résonnantes réparties aléatoirement. PhD thesis, Université de Bordeaux, 2013 [Google Scholar]
  51. F.Luppé, J.-M.Conoir, T.Valier-Brasier: Longitudinal and transverse coherent waves in media containing randomly distributed spheres. Wave Motion 115 (2022) 103082 [Google Scholar]
  52. C.Audoly, V.Leroy: Locally resonant metamaterials for underwater acoustic applications: comparison of an analytical model with experimental results, in: 28th International Congress on Sound and Vibration, Singapore, 2022 [Google Scholar]
  53. Z.Liu, X.Zhang, Y.Mao, Y.Y.Zhu, Z.Yang, C.T.Chan, P.Sheng: Locally resonant sonic materials. Science 289 (2000) 1734–1736 [CrossRef] [Google Scholar]
  54. H.Zhao, Y.Liu, J.Wen, D.Yu, X.Wen: Tri-component phononic crystals for underwater anechoic coatings. Physics Letters A 367 (2007) 224–232 [Google Scholar]
  55. P.Méresse: Matériaux absorbants à structure périodique et inclusions résonantes pour l’acoustique sous-marine. PhD thesis, Université de Lille 1, 2015 [Google Scholar]
  56. K.Shi, G.Jin, R.Liu, T.Ye, Y.Xue: Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers. Results in Physics 12 (2019) 132–142 [Google Scholar]
  57. H.Meng, J.Wen, H.Zhao, X.Wen: Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics. Journal of Sound and Vibration 331 (2012) 4406–4416 [CrossRef] [Google Scholar]
  58. H.Meng, J.Wen, H.Zhao, L.Lv, X.Wen: Analysis of absorption performances of anechoic layers with steel plate backing. Journal of the Acoustical Society of America 132 (2012) 69–75 [Google Scholar]
  59. H.Zhao, J.Wen, D.Yu, X.Wen: Low-frequency acoustic absorption of localized resonances: experiment and theory. Journal of Applied Physics 107 (2010) 023519 [Google Scholar]
  60. G.S.Sharma, A.Skvortsov, I.MacGillivray, N.Kessissoglou: Sound absorption by rubber coatings with periodic voids and hard inclusions. Applied Acoustics 143 (2019) 200–210 [Google Scholar]
  61. G.Jin, K.Shi, T.Ye, J.Zhou, Y.Yin: Sound absorption behaviors of metamaterials with periodic multi-resonators and voids in water. Applied Acoustics 166 (2020) 107351 [Google Scholar]
  62. S.Qu, N.Gao, A.Tinel, B.Morvan, V.Romero-Garcia, J.P.Groby, P.Sheng: Underwater metamaterial absorber with impedance-matched composite. Science Advances 8 (2022) eabm4206 [Google Scholar]
  63. H.Jiang, Y.Wang: Phononic glass: a robust acoustic-absorption material. Journal of the Acoustical Society of America 32 (2012) 694–699 [Google Scholar]
  64. G.Yu, Y.Qiu, Y.Li, X.Wang, N.Wang: Underwater acoustic stealth by a broadband 2-bit coding metasurface. Physical Review Applied 15 (2021) 064064 [Google Scholar]
  65. Q.Baudis: Caractérisation acoustique de matériaux viscoélastiques homogènes et hétérogènes pour la furtivité sous-marine. PhD thesis, Sorbonne Université, 2023 [Google Scholar]
  66. M.Mazzotti, A.Foehr, O.R.Bilal, A.Bergamini, F.Bosia, C.Daraio, N.M.Pugno, M.Miniaci: Bio-inspired non self-similar hierarchical elastic metamaterials. International Journal of Mechanical Sciences 241 (2023) 107915 [Google Scholar]
  67. U.De Maio, F.Greco, R.Luciano, G.Sgambitterra, A.Pranno: Microstructural design for elastic waves attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets. Mechanics Research Communications 128 (2023) 104045 [Google Scholar]
  68. L.Roux: Acoustic metamaterials for underwater applications: homogenisation methods, design optimisation and experimental characterization. PhD thesis, Université de Lille, 2021 [Google Scholar]
  69. L.Roux, C.Croënne, C.Audoly, A.-C.Hladky: Homogenization of acoustic metamaterials using retrieval methods. Journal of Applied Physics 127 (2020) 225102 [Google Scholar]
  70. J.Liu, H.Yang, H.Zhao, Y.Wang, D.Yu, J.Wen: Homogenization of an acoustic coating with a steel backing subject to an obliquely incident sound. Journal of the Acoustical Society of America 152 (2022) 624–632 [Google Scholar]
  71. Y.Wang, H.Zhao, H.Yang, J.Zhong, D.Yu, J.Wen: Inverse design of structured materials for broadband sound absorption. Journal of Physics D: Applied Physics 54 (2021) 265301 [Google Scholar]
  72. C.Audoly, T.Gaggero, E.Baudin, T.Folegot, E.Rizzuto, R.Salinas Mullor, M.André, C.Rousset, P.Kellett: Mitigation of underwater radiated noise related to shipping and its impact on marine life: a practical approach developed in the scope of AQUO project. IEEE Journal of Oceanic Engineering 42 (2017) 373–387 [Google Scholar]
  73. S.Koschinski, K.Lüdemann: Development of noise mitigation measures in offshore windfarm construction. Report Commissioned by the Federal Agency for Nature Conservation, Bundesamt für Naturschutz, Germany, 2013. https://www.cbd.int/doc/meetings/ mar/mcbem-2014-01/other/mcbem-2014-01-submission- noise-mitigation-en.pdf. [Google Scholar]
  74. F.Wilke, K.Kloske, M.Bellmann: ESRa-Evaluation of systems for ramming noise mitigation at an offshore test pile. Report prepared and published by RWE Offshore Logistics Company, Essen, Germany, 2012. https://tethys.pnnl.gov/publications/esra-evaluation-systems-ramming-noise-mitigation-offshore-test-pilehttps://tethys.pnnl.gov/publications/esra- evaluation-systems-ramming-noise-mitigation- offshore-test-pile. [Google Scholar]
  75. B.Bruns, C.Kuhn, P.Stein, J.Gatermann, K.H.Elmer: The new noise mitigation system “Hydro Sound Dampers”: history of development with several hydro sound and vibration measurements, in: Proceedings of INTER-NOISE and NOISE-CON Congress and Conference, International Institute of Noise Control Engineering, 2014. https://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p743.pdfhttps://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p743.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.