Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 49
Number of page(s) 13
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2025024
Published online 06 August 2025
  1. Association Structure Sonore Baschet: http://baschet.org/. Accessed:2024-09-04. [Google Scholar]
  2. H. Bouasse: Verges et plaques, cloches et carillons. Delagrave, Paris, 1927. [Google Scholar]
  3. F. Baschet, B. Baschet: Organologie des structures Sonores Baschet. Vol. 1 and 2. Self-publisher, 1985. [Google Scholar]
  4. F. Baschet: Journal d’une recherche acoustique 1953 á 1963. Vol. 1. Self-publisher, 1963. [Google Scholar]
  5. F. Baschet: The Sound Sculptures of Bernard and François Baschet. Edicions de la Universistat de Barcelona, 2017. [Google Scholar]
  6. A. Jenkins: Self-oscillation. Physics Reports 525, 2 (2013) 167–222. [Google Scholar]
  7. A. Couineaux, F. Ablitzer, F. Gautier: Minimal physical model of the cristal Baschet. Acta Acustica 7 (2023) 49. [CrossRef] [EDP Sciences] [Google Scholar]
  8. F. Gautier, J.-L. Le Carrou, A. Elmaian, F. Bousquet: Acoustics of the cristal Baschet, in: 20th International Symposium on Music Acoustics, Sydney and Katoomba (Australia), 2010. [Google Scholar]
  9. T.D. Rossing: The Science of String Instruments. Springer, 2010. [Google Scholar]
  10. A. Chaigne, J. Kergomard: Acoustique des instruments de musique (Acoustics of Musical Instruments) (2e édition revue et augmentée). Belin, 2013. [Google Scholar]
  11. J.C. Schelleng: The bowed string and the player. The Journal of the Acoustical Society of America 53 (1973) 26–41. [Google Scholar]
  12. M. Demoucron: On the control of virtual violins Physical modelling and control of bowed string instruments. PhD thesis, Université Pierre et Marie Curie – Paris VI; Royal Institute of Technology, Stockholm, 2008. [Google Scholar]
  13. V. Debut, J. Antunes, O. Inácio: Linear modal stability analysis of bowed-strings. The Journal of the Acoustical Society of America 141, 3 (2017) 2107–2120. [Google Scholar]
  14. O. Inácio, L. Henrique, J. Antunes: Simulation of the oscillation regimes of bowed bars: a non-linear modal approach. Communications in Nonlinear Science and Numerical Simulation 8, 2 (2003) 77–95. [Google Scholar]
  15. A. Akay: Acoustics of friction. The Journal of the Acoustical Society of America 111 (2002) 1525–1548. [Google Scholar]
  16. F. Marques, P. Flores, J.-C.P. Claro, H.M. Lankarani: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody System Dynamics 45 (2019) 223–244. [Google Scholar]
  17. J. Woodhouse: Physical modeling of bowed strings. Computer Music Journal 16, 4 (1992) 43–56. [Google Scholar]
  18. S. Derler, G.-M. Rotaru: Stick-slip phenomena in the friction of human skin. Wear 301 (2013) 324–329. [Google Scholar]
  19. M. Géradin, D.J. Rixen: Mechanical Vibrations: Theory and Application to Structural Dynamics. John Wiley & Sons, 2015. [Google Scholar]
  20. S. Inaba, S. Fujino, K. Morinaga: Young’s modulus and compositional parameters of oxide glasses. Journal of the American Ceramic Society 82, 12 (1999) 3501–3507. [Google Scholar]
  21. Z. Chen, U. Gandhi, J. Lee, R.H. Wagoner: Variation and consistency of Young’s modulus in steel. Journal of Materials Processing Technology 227 (2016) 227–243. [Google Scholar]
  22. J.-L. Le Carrou: Vibro-acoustique de la harpe de concert. PhD thesis, École doctorale de l’Université du Maine, 2006. [Google Scholar]
  23. J.P. Den Hartog: Mechanical Vibrations. Courier Corporation, 1985. [Google Scholar]
  24. E. Manconi, B. Mace: Veering and strong coupling effects in structural dynamics. Journal of Vibration and Acoustics 139 (2017) 021009. [CrossRef] [Google Scholar]
  25. J. Woodhouse, P.M. Galluzzo: The bowed string as we know it today. Acta Acustica United With Acustica 90 (2004) 579–589. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.