Issue |
Acta Acust.
Volume 4, Number 4, 2020
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 11 | |
Section | Computational and Numerical Acoustics | |
DOI | https://doi.org/10.1051/aacus/2020011 | |
Published online | 18 September 2020 |
Scientific Article
Partition of Unity Finite Element Method applied to exterior problems with Perfectly Matched Layers
1
Université de technologie de Compiègne, CNRS, Roberval (Mechanics energy and electricity), Centre de recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
2
Institut supérieur de mécanique de Paris (SUPMECA), Laboratoire Quartz EA 7393, 3 rue Fernand Hainaut, 93407 Saint-Ouen, France
* Corresponding author: christophe.langlois@utc.fr
Received:
22
April
2020
Accepted:
15
July
2020
The Partition of Unity Finite Element Method (PUFEM) is now a well established and efficient method used in computational acoustics to tackle short-wave problems. This method is an extension of the classical finite element method whereby enrichment functions are used in the approximation basis in order to enhance the convergence of the method whilst maintaining a relatively low number of degrees of freedom. For exterior problems, the computational domain must be artificially truncated and special treatments must be followed in order to avoid or reduce spurious reflections. In recent papers, different Non-Reflecting Boundary Conditions (NRBCs) have been used in conjunction with the PUFEM. An alternative is to use the Perfectly Match Layer (PML) concept which consists in adding a computational sponge layer which prevents reflections from the boundary. In contrast with other NRBCs, the PML is not case specific and can be applied to a variety of configurations. The aim of this work is to show the applicability of PML combined with PUFEM for solving the propagation of acoustic waves in unbounded media. Performances of the PUFEM-PML are shown for different configurations ranging from guided waves in ducts, radiation in free space and half-space problems. In all cases, the method is shown to provide acceptable results for most applications, similar to that of local approximation of NRBCs.
© C. Langlois et al., Published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.