Open Access
Issue
Acta Acust.
Volume 4, Number 4, 2020
Article Number 16
Number of page(s) 11
Section Computational and Numerical Acoustics
DOI https://doi.org/10.1051/aacus/2020011
Published online 18 September 2020
  1. R.-D. Ciskowski, C.-A. Brebbia: Boundary element methods in acoustics . Computational Mechanics Publications, Southampton; Boston/Elsevier Applied Science, London; New York, 1991. [Google Scholar]
  2. P. Bettess, O. Laghrouche, E. Perrey-Debain: Short wave scattering: problems and techniques. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362, 1816 (2004) 421–443. [CrossRef] [Google Scholar]
  3. A. Deraemaeker, I. Babuška, P. Bouillard: Dispersion and pollution of the fem solution for the helmholtz equation in one, two and three dimensions. International Journal for Numerical Methods in Engineering 46, 4 (1999) 471–499. [Google Scholar]
  4. J.-M. Melenk, I. Babuška: The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering 139, 1 (1996) 289–314. [Google Scholar]
  5. T. Huttunen, P. Monk, J. Kaipio: Computational aspects of the ultra-weak variational formulation. Journal of Computational Physics 182, 1 (2002) 27–46. [Google Scholar]
  6. E. Deckers, O. Atak, L. Coox, R. D’Amico, H. Devriendt, S. Jonckheere, K. Koo, B. Pluymers, D. Vandepitte, W. Desmet: The wave based method: An overview of 15 years of research. Wave Motion 51, 4 (2014) 550–565. [Google Scholar]
  7. C. Farhat, I. Harari, L. Franca: The discontinuous enrichment method. Computer Methods in Applied Mechanics and Engineering 190, 48 (2001) 6455–6479. [Google Scholar]
  8. H. Riou, P. Ladevèze, B. Sourcis: The multiscale vtcr approach applied to acoustics problems. Journal of Computational Acoustics 16, 04 (2008) 487–505. [CrossRef] [Google Scholar]
  9. O. Laghrouche, P. Bettess: Short wave modelling using special finite elements. Journal of Computational Acoustics 08, 01 (2000) 189–210. [CrossRef] [Google Scholar]
  10. O. Laghrouche, P. Bettess, E. Perrey-Debain, J. Trevelyan: Plane wave basis for wave scattering in three dimensions. Communications in Numerical Methods in Engineering 19, 09 (2003) 715–723. [Google Scholar]
  11. R.J. Astley, P. Gamallo: Special short wave elements for flow acoustics. Computer Methods in Applied Mechanics and Engineering 194, 2 (2005) 341–353. Selected papers from the 11th Conference on The Mathematics of Finite Elements and Applications. [Google Scholar]
  12. J.-D. Chazot, B. Nennig, E. Perrey-Debain: Performances of the partition of unity finite element method for the analysis of two-dimensional interior sound field with absorbing materials. Journal of Sound and Vibration 332, 8 (2013) 1918–1929. [Google Scholar]
  13. J.-D. Chazot, E. Perrey-Debain and B. Nennig: The partition of unity finite element method for the simulation of waves in air and poroelastic media. Journal of the Acoustical Society of America 135, 2 (2014) 724–733. [CrossRef] [Google Scholar]
  14. L.L. Thompson: A review of finite-element methods for time-harmonic acoustics. The Journal of the Acoustical Society of America 119, 3 (2006) 1315–1330. [Google Scholar]
  15. O. Laghrouche, A. El-Kacimi, J. Trevelyan: A comparison of nrbcs for pufem in 2d helmholtz problems at high wave numbers. Journal of Computational and Applied Mathematics 234, 6 (2010) 1670–1677. [Google Scholar]
  16. R. Kechroud, A. Soulaimani, X. Antoine: A performance study of plane wave finite element methods with a padè-type artificial boundary condition in acoustic scattering. Advances in Engineering Software 40, 8 (2009) 738–750. [CrossRef] [Google Scholar]
  17. G. Gabard: Discontinuous galerkin methods with plane waves for time-harmonic problems. Journal of Computational Physics 225, 2 (2007) 1961–1984. [Google Scholar]
  18. J.-P. Berenger: A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114, 2 (1994) 185–200. [Google Scholar]
  19. E. Bécache, A.-S. Bonnet-Ben Dhia and G. Legendre: Perfectly matched layers for the convected Helmholtz equation. Research Report RR-4690, INRIA, 2003. [Google Scholar]
  20. T. Huttunen, J.P. Kaipio, P. Monk: The perfectly matched layer for the ultra weak variational formulation of the 3d Helmholtz equation. International Journal for Numerical Methods in Engineering 61 7 (2004) 1072–1092. [Google Scholar]
  21. A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodríguez: An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. Journal of Computational Physics 223, 2 (2007) 469–488. [Google Scholar]
  22. T. Huttunen, P. Gamallo, R.-J. Astley: Comparison of two wave element methods for the Helmholtz problem. Communications in Numerical Methods in Engineering 25 (2009) 35–52. [Google Scholar]
  23. C. Geuzaine, J.-F. Remacle: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79 (2009). [CrossRef] [PubMed] [Google Scholar]
  24. E. Perrey-Debain, O. Laghrouche, P. Bettess, J. Trevelyan: Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences (2003) https://doi.org/10.1002/cnm.632. [Google Scholar]
  25. A. Modave, E. Delhez, C. Geuzaine: Optimizing perfectly matched layers in discrete contexts. International Journal for Numerical Methods in Engineering 99, 6 (2014) 410–437. [Google Scholar]
  26. V. Cutanda Henriquez, P. Juhl: OpenBEM – An open source Boundary Element Method software in Acoustics. Proceedings of Internoise, 2010, 2010. [Google Scholar]
  27. T. Ishizuka, K. Fujiwara: Performance of noise barriers with various edge shapes and acoustical conditions. Applied Acoustics 65, 2 (2004) 125–141. [CrossRef] [Google Scholar]
  28. M. Yang, E. Perrey-Debain, B. Nennig, J.-D. Chazot: Development of 3d pufem with linear tetrahedral elements for the simulation of acoustic waves in enclosed cavities. Computer Methods in Applied Mechanics and Engineering 335 (2018) 403–418. [Google Scholar]
  29. O. El Kacimi, D. Laghrouche, M.S. Ouazarc, M. Seaidd, J. Trevelyan: Trevelyan Enhanced conformal perfectly matched layers for Bernstein–Bézier finite element modelling of short wave scattering. Computer Methods in Applied Mechanics and Engineering 355 (2019) 614–638. [Google Scholar]
  30. V. Ziel, H. Beriot, O. Atak, G. Gabard: High-order 2d mesh curving methods with a piecewise linear target and application to Helmholtz problems. Computer-Aided Design 105 (2018) 07. [CrossRef] [Google Scholar]
  31. M. Gaborit, O. Dazel, P. Göransson, G. Gabard: Coupling of finite element and plane waves discontinuous galerkin methods for time-harmonic problems. International Journal for Numerical Methods in Engineering 116, 7 (2018) 487–503. [Google Scholar]
  32. M. Hornikx: Ten questions concerning computational urban acoustics. Building and Environment 106 (2016) 409–421. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.