Open Access

Algorithm 2

Find parameter g.

procedure ParamG(xr0, xrV, z0, H, V, N, η, β, a, b, X)
 constant:
  κ1 = 3
  maxit = 50
  Δv = −V/N
  ν = f(xr,0, z0) according to Eq. (19)
  ϑ0 = ν − η according to Fig. 2
   r = z 0 sin ( η + ϑ 0 ) $ r=\frac{{z}_0}{\mathrm{sin}(\eta +{\vartheta }_0)}$
  X = xr,0xRv
 initialization:
  W = zeros(N, 1)
  Wh = zeros(N, 1)
  Wv = zeros(N, 1)
  Wv[1] = −sinϑ0
  Whh = a
  gmax = f(z0η, Wv[1], Wh[1])
   g = 0.99   g max 2 $ g=\sqrt{0.99\enspace {g}_{\mathrm{max}}^2}$
 repeat
  for n = 1…N do
   W[n + 1] ← W[n] + Wv[nv num. int.
   v = n Δv
   rf(v, η, Wh[n], Wv[n], z0) cf. Eq. (12)
   Wvv ← f(r, g, β, a, b, Wv[n], Wh[n]) cf. Eq. (18)
   Wv[n + 1] ← Wv[n] + Wvv Δv num. int.
  end for
   uz - Wv [ n ] cos η + 1 - Wv [ n ] 2 - Wh [ n ] ) 2   sin η $ {uz}\leftarrow -{Wv}[n]\mathrm{cos}\eta +\sqrt{1-{Wv}[n{]}^2-{Wh}[n]{)}^2}\enspace \mathrm{sin}\eta $
   X ̃ x r 0 + V   sin η - r   1 - Wh [ n ] 2 - Wv [ n ] 2 $ \mathop{X}\limits^\tilde\leftarrow {x}_{\mathrm{r}0}+V\enspace \mathrm{sin}\eta -r\enspace \sqrt{1-{Wh}[n{]}^2-{Wv}[n{]}^2}$
   α 1 ( X X ̃ ) κ 1 $ {\alpha }_1\leftarrow {\left(\frac{X}{\mathop{X}\limits^\tilde}\right)}^{{\kappa }_1}$
   g g min   ( g g min ) α 1 $ g\leftarrow \sqrt{{g}_{\mathrm{min}}\enspace {\left(\frac{g}{{g}_{\mathrm{min}}}\right)}^{{\alpha }_1}}$
 until 0.99X̂X1.01$ 0.99\le \frac{\widehat{X}}{X}\le 1.01$ or it > maxit
 return g
end procedure

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.