Open Access
Original Article
Issue
Acta Acust.
Volume 4, Number 1, 2020
Article Number 1
Number of page(s) 17
Section Audio Signal Processing and Transducers
DOI https://doi.org/10.1051/aacus/2019001
Published online 28 February 2020
  1. W. Klippel: Tutorial: Loudspeaker nonlinearities – causes, parameters, symptoms. Journal of the Audio Engineering Society 54 (2006) 907–939. [Google Scholar]
  2. B.R. Pedersen: Error correction of loudspeakers. PhD thesis, Aalborg University, Denmark, 2008. [Google Scholar]
  3. P. Brunet: Nonlinear system modeling and identification of loudspeakers. PhD thesis, Northeastern University Boston, 2014. [Google Scholar]
  4. J. Suykens, J. Vandewalle, J. Van Ginderdeuren: Feedback linearization of nonlinear distortion in electrodynamic loudspeakers. Journal of the Audio Engineering Society 43 (1995) 690–694. [Google Scholar]
  5. D. Jakobsson, M. Larsson: Modelling and compensation of nonlinear loudspeaker. Master’s Thesis, Department of Signals and Systems, Chalmers University of Technology, Sweden, 2010. [Google Scholar]
  6. M. Arvidsson, D. Karlsson: Attenuation of Harmonic Distortion in Loudspeakers Using Non-Linear Control. Institutionen för systemteknik, Linköping, 2012. [Google Scholar]
  7. A. Falaize, N. Papazoglou, T. Hélie, N. Lopes: Compensation of loudspeaker’s nonlinearities based on flatness and port-Hamiltonian approach, in 22ème Congrès Français de Mécanique, Lyon, France, August 2015. Association Française de Mécanique, 2015. [Google Scholar]
  8. S. Tassart, S. Valcin, M. Menu: Active loudspeaker heat protection. Journal of the Audio Engineering Society 62 (2014) 767–775. [CrossRef] [Google Scholar]
  9. N. Thiele: Loudspeakers in vented boxes: Part 1. Journal of the Audio Engineering Society 19 (1971) 382–392. [Google Scholar]
  10. N. Thiele: Loudspeakers in vented boxes: Part 2. Journal of the Audio Engineering Society 19 (1971) 471–483. [Google Scholar]
  11. R.H. Small: Closed-box loudspeaker systems-part 1: analysis. Journal of the Audio Engineering Society 20 (1972) 798–808. [Google Scholar]
  12. R.H. Small: Closed-box loudspeaker systems-part 2: Synthesis. Journal of the Audio Engineering Society 21 (1973) 11–18. [Google Scholar]
  13. P.J. Chapman: Thermal simulation of loudspeakers, in Audio Engineering Society Convention 104. Audio Engineering Society, 1998. [Google Scholar]
  14. W. Marshall Leach Jr.: Loudspeaker voice-coil inductance losses: circuit models, parameter estimation, and effect on frequency response. Journal of the Audio Engineering Society 50 (2002) 442–450. [Google Scholar]
  15. W. Klippel: Nonlinear modeling of the heat transfer in loudspeakers. Journal of the Audio Engineering Society 52 (2004) 3–25. [Google Scholar]
  16. K. Thorborg, A.D. Unruh, C.J. Struck: An improved electrical equivalent circuit model for dynamic moving coil transducers. Audio Engineering Society Convention 122 (2007). [Google Scholar]
  17. K. Thorborg, C. Tinggaard, F. Agerkvist, C. Futtrup: Frequency dependence of damping and compliance in loudspeaker suspensions. Journal of the Audio Engineering Society 58 (2010) 472–486. [Google Scholar]
  18. F.T. Agerkvist: Non-linear viscoelastic models, in Audio Engineering Society Convention 131, New York, NY, Audio Engineering Society. 2011. [Google Scholar]
  19. W. Klippel: Dynamic measurement and interpretation of the nonlinear parameters of electrodynamic loudspeakers. Journal of the Audio Engineering Society 38 (1990) 944–955. [Google Scholar]
  20. M.R. Bai, C.M. Huang: Expert diagnostic system for moving-coil loudspeakers using nonlinear modeling. The Journal of the Acoustical Society of America 125 (2009) 819–830. [CrossRef] [PubMed] [Google Scholar]
  21. A.J.M. Kaizer: Modeling of the nonlinear response of an electrodynamic loudspeaker by a volterra series expansion. Journal of the Audio Engineering Society 35 (1987) 421–433. [Google Scholar]
  22. S. Brown: Linear and nonlinear loudspeaker characterization. PhD thesis, Citeseer, 2006. [Google Scholar]
  23. K. Lashkari: A novel volterra-wiener model for equalization of loudspeaker distortions, in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, Vol. 5, IEEE, 2006, pp. V–V. [Google Scholar]
  24. P. Brunet, B. Shafai: State-space modeling and identification of loudspeaker with nonlinear distortion, in Modelling, Identification, and Simulation, IASTED International Conference on, Vol. 755. 2011. [Google Scholar]
  25. M. Soria-Rodríguez, M. Gabbouj, N. Zacharov, M.S. Hämäläinen, K. Koivuniemi: Modeling and real-time auralization of electrodynamic loudspeaker non-linearities, in Acoustics, Speech, and Signal Processing, 2004. Proceedings (ICASSP’04). IEEE International Conference on, Vol. 4, IEEE, 2004, pp. iv–81. [Google Scholar]
  26. B.M. Maschke, A.J. Van Der Schaft, P.C. Breedveld: An intrinsic hamiltonian formulation of network dynamics: Non-standard poisson structures and gyrators. Journal of the Franklin Institute 329 (1992) 923–966. [Google Scholar]
  27. A. van der Schaft: Port-Hamiltonian systems: an introductory survey. Proceedings oh the International Congress of Mathematicians 3 (2006) 1339–1366. [Google Scholar]
  28. V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx: Modeling and control of complex physical systems: The Port-Hamiltonian approach. Springer Science & Business Media, 2009. [Google Scholar]
  29. A. Falaize, T. Hélie: Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach. Applied Sciences 6 (2016) 273. [CrossRef] [Google Scholar]
  30. M.H. Knudsen, J.G. Jensen: Low-frequency loudspeaker models that include suspension creep. Journal of the Audio Engineering Society 41 (1993) 3–18. [Google Scholar]
  31. B.R. Pedersen, F.T. Agerkvist: Time varying behavior of the loudspeaker suspension, in Audio Engineering Society Convention 123. Audio Engineering Society, 2007. [Google Scholar]
  32. M. Getzlaff: Fundamentals of magnetism. Springer Science & Business Media, 2007. [Google Scholar]
  33. V. François-Lavet, F. Henrotte, L. Stainer, L. Noels, C. Geuzaine: Vectorial incremental nonconservative consistent hysteresis model, in Proceedings of the 5th International Conference on Advanded COmputational Methods in Engineering (ACOMEN2011), 2011. [Google Scholar]
  34. A. Rumeau: Modélisation comportementale en génie électrique sous représentation diffusive: méthodes et applications. PhD thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2009. [Google Scholar]
  35. A. Falaize: Pyphs: A Python software (Py) dedicated to the simulation of multi-physical Port-Hamiltonian Systems (PHS) described by graph structures. https://github.com/pyphs/pyphs, accessed 21st of Decemeber, 2016. [Google Scholar]
  36. J.-J.E. Slotine, W. Li, et al.: Applied Nonlinear Control, Vol. 199. Prentice-Hall, Englewood Cliffs, NJ, 1991. [Google Scholar]
  37. F.T. Agerkvist, T. Ritter: Modeling viscoelasticity of loudspeaker suspensions using retardation spectra, in Audio Engineering Society Convention 129, New York, NY, Audio Engineering Society. 2010. [Google Scholar]
  38. R.C. Koeller: Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics 51 (1984) 299–307. [Google Scholar]
  39. R. Lewandowski, B. Chorażyczewski: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Computers & Structures 88 (2010) 1–17. [Google Scholar]
  40. W.N. Findley, F.A. Davis: Creep and relaxation of nonlinear viscoelastic materials. Courier Corporation, 2013. [Google Scholar]
  41. J. Vanderkooy: A model of loudspeaker driver impedance incorporating eddy currents in the pole structure, in Audio Engineering Society Convention 84. Audio Engineering Society, 1988. [Google Scholar]
  42. J.R. Wright: An empirical model for loudspeaker motor impedance. Journal of the Audio Engineering Society 38 (1990) 749–754. [Google Scholar]
  43. M. Dodd, W. Klippel, J. Oclee-Brown: Voice coil impedance as a function of frequency and displacement, in Audio Engineering Society Convention 117. Audio Engineering Society, 2004. [Google Scholar]
  44. X.-P. Kong, F. Agerkvist, X.-W. Zeng: Modeling of lossy inductance in moving-coil loudspeakers. Acta Acustica United With Acustica 101 (2015). [Google Scholar]
  45. R. Buntenbach: A generalized circuit model for multiwinding inductive devices. Magnetics, IEEE Transactions on 6 (1970) 65–65. [CrossRef] [Google Scholar]
  46. D.C. Hamill: Lumped equivalent circuits of magnetic components: the gyrator-capacitor approach. Power Electronics, IEEE Transactions on 8 (1993) 97–103. [CrossRef] [Google Scholar]
  47. L. Laudebat: Modélisation et identification sous représentation diffusive de comportements dynamiques non rationnels en génie électrique. Thèse de l’Université Paul Sabatier, Toulouse, 2003. [Google Scholar]
  48. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado: Advances in Fractional Calculus, Vol. 4. Springer, 2007. [CrossRef] [Google Scholar]
  49. I. Schäfer, K. Krüger: Modelling of lossy coils using fractional derivatives. Journal of Physics D: Applied Physics 41 (2008) 045001. [Google Scholar]
  50. P. Brunet, B. Shafai: Identification of loudspeakers using fractional derivatives. Journal of the Audio Engineering Society 62 (2014) 505–515. [CrossRef] [Google Scholar]
  51. T. Itoh, K. Abe: Hamiltonian-conserving discrete canonical equations based on variational difference quotients, Journal of Computational Physics 76 (1988) 85–102. [Google Scholar]
  52. N. Lopes, T. Hélie, A. Falaize: Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems. IFAC-PapersOnLine 48 (2015) 223–228. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.