Open Access
Issue
Acta Acust.
Volume 4, Number 2, 2020
Article Number 5
Number of page(s) 14
Section Room Acoustics
DOI https://doi.org/10.1051/aacus/2020006
Published online 12 May 2020
  1. H. Kuttruff: Room Acoustics. CRC Press, Boca Raton, FL, 2009. [Google Scholar]
  2. T. Cox, D. Peter: Acoustic Absorbers and Diffusers: Theory, Design and Application, CRC Press, Boca Raton, FL, 2009. [Google Scholar]
  3. Y. Yasuda, A. Ushiyama, S. Sakamoto, H. Tachibana: Experimental and numerical studies on reverberation characteristics in a rectangular room with unevenly distributed absorbers. Acoustical Science and Technology 27 (2006) 366–374. [Google Scholar]
  4. S. Bistafa: Adaptive control of low-frequency acoustic modes in small rooms. The Open Acoustics Journal 5 (2012) 16–22. [CrossRef] [Google Scholar]
  5. P. Dämmig, H. Deicke: Measurement uncertainty in the determination of the sound absorption in a reverberation room at low frequencies. Acta Acustica United With Acustica 33 (1975) 249–256. [Google Scholar]
  6. A. Celestinos, S.B. Nielsen: Controlled acoustic bass system (cabs) a method to achieve uniform sound field distribution at low frequencies in rectangular rooms. Journal of the Audio Engineering Society 56 (2008) 915–931. [Google Scholar]
  7. E. Rivet, S. Karkar, H. Lissek: On the optimisation of multi-degree-of-freedom acoustic impedances of low-frequency electroacoustic absorbers for room modal equalisation. Acta Acustica United With Acustica 103 (2017) 1025–1036. [CrossRef] [Google Scholar]
  8. D. Habault, E. Friot, P. Herzog, C. Pinhede: Active control in an anechoic room: Theory and first simulations. Acta Acustica United With Acustica 103 (2017) 369–378. [CrossRef] [Google Scholar]
  9. T. Ajdler, L. Sbaiz, M. Vetterli: The plenacoustic function and its sampling. IEEE Transactions on Signal Processing 54 (2006) 3790–3804. [CrossRef] [Google Scholar]
  10. Y. Haneda, Y. Kaneda, N. Kitawaki: Common-acoustical-pole and residue model and its application to spatial interpolation and extrapolation of a room transfer function. IEEE Transactions on Speech and Audio Processing 7 (1999) 709–717. [CrossRef] [Google Scholar]
  11. Y. Haneda, S. Makino, Y. Kaneda: Common acoustical pole and zero modeling of room transfer functions. IEEE Transactions on Speech and Audio Processing 2 (1994) 320–328. [CrossRef] [Google Scholar]
  12. J. Mourjopoulos, M. Paraskevas: Pole and zero modeling of room transfer functions. Journal of Sound and Vibration 146 (1991) 281–302. [Google Scholar]
  13. R. Mignot, G. Chardon, L. Daudet: Low frequency interpolation of room impulse responses using compressed sensing. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22 (2014) 205–216. [Google Scholar]
  14. S.A. Verburg, E. Fernandez-Grande: Reconstruction of the sound field in a room using compressive sensing. The Journal of the Acoustical Society of America 143 (2018) 3770–3779. [CrossRef] [PubMed] [Google Scholar]
  15. M. Karjalainen, T. Paatero, J.N. Mourjopoulos, P.D. Hatziantoniou: About Room Response Equalization and Dereverberation. IEEE, New Paltz, NY, 2005, pp. 183–186. [Google Scholar]
  16. M. Karjalainen, A. Makivirta, P. Antsalo, V. Valimaki: Low-frequency modal equalization of loudspeaker-room responses, in AES 111th Convention, 21–24 September, New York, NY. 2001. [Google Scholar]
  17. E. Rivet, S. Karkar, H. Lissek: Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control. IEEE Transactions on Control Systems Technology 25 (2017) 63–72. [CrossRef] [Google Scholar]
  18. P.M. Morse, K.U. Ingard: Theoretical Acoustics. Princeton University Press, Princeton, NJ, 1986. [Google Scholar]
  19. A. Moiola, R. Hiptmair, I. Perugia: Plane wave approximation of homogeneous helmholtz solutions. Zeitschrift fur Angewandte Mathematik und Physik 62 (2011) 809–837. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.A. Tropp, A.C. Gilbert, M.J. Strauss: Algorithms for simultaneous sparse approximation. Part i: Greedy pursuit. Signal Processing 86 (2006) 572–588. [Google Scholar]
  21. G. Chardon, L. Daudet: Optimal subsampling of multichannel damped sinusoids, in 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop. 2010. [Google Scholar]
  22. M.H. Richardson, D.L. Formenti: Global curve fitting of frequency response measurements using the rational fraction polynomial method, in International Modal Analysis Conference and Exhibit. 1985. [Google Scholar]
  23. E. Rivet, S. Karkar, H. Lissek, T. Thorsen, V. Adam: Experimental assessment of low-frequency electroacoustic absorbers for room modal equalization in actual listening rooms, in AES 140th Convention, 4–7 June, Paris, France. 2001, p. 9505. [Google Scholar]
  24. P. Leopardi: A partition of the unit sphere into regions of equal area and small diameter. Electronic Transactions on Numerical Analysis 25 (2006) 309–327. [Google Scholar]
  25. A.H. Barnett, T. Betcke: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. Journal of Computational Physics 227 (2008) 7003–7026. [Google Scholar]
  26. R. Hiptmair, A. Moiola, I. Perugia: Plane wave discontinuous galerkin methods for the 2D Helmholtz equation: Analysis of the p-version. SIAM Journal on Numerical Analysis 49 (2011) 264–284. [Google Scholar]
  27. W.C. Sabine: Architectural Acoustics, (1900; reprinted by Dover, New York, 1964). [Google Scholar]
  28. L.L. Beranek: Acoustic Measurements. Wiley, New York, NY, 1965. [Google Scholar]
  29. M.H. Richardson, D.L. Formenti: Parameter estimation from frequency response measurements using rational fraction polynomials, in Proceedings of the 1st International Modal Analysis Conference. 1982, pp. 167–181. [Google Scholar]
  30. G. Chardon, A. Cohen, L. Daudet: Sampling and reconstruction of solutions to the Helmholtz equation. Sampling Theory in Signal and Image Processing 13 (2014) 67–90. [Google Scholar]
  31. N. Antonello, E. De Sena, M. Moonen, P.A. Naylor, T. van Waterschoot: Joint acoustic localization and dereverberation through plane wave decomposition and sparse regularization. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27 (2019) 1893–1905. [Google Scholar]
  32. G.E. Forsythe: Generation and use of orthogonal polynomials for data-fitting with a digital computer. Journal of the Society for Industrial and Applied Mathematics 5 (1957) 74–88. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.