Open Access
This article has a note: []

Acta Acust.
Volume 4, Number 2, 2020
Article Number 4
Number of page(s) 11
Section Computational and Numerical Acoustics
Published online 16 April 2020
  1. P.J. Remington: Wheel/Rail Rolling Noise: What do we know? What don’t we know? Where do we go from here? Journal of Sound and Vibration 120 (1988) 203–226. [Google Scholar]
  2. A. Kuijpers, G. Blokland: Tyre/Road Noise Models in the Last two Decades: A Critical Evaluation. The Hague, Holland, 2001. [Google Scholar]
  3. M. Edwards, F. Chevillotte, L. Jaouen, F.-X. Bécot, N. Totaro: Rolling Noise Modeling in Buildings, Chicago, IL USA, 2018. [Google Scholar]
  4. P. Remington, J. Webb: Estimation of wheel/rail interaction forces in the contact area due to roughness. Journal of Sound and Vibration 193 (1996) 83–102. [Google Scholar]
  5. D.J. Thompson, B. Hemsworth, N. Vincent: Experimental validation of the TWINS prediction program for rolling noise, Part 1: Description of the model and method, Journal of Sound and Vibration 193 (1996) 123–135. [Google Scholar]
  6. T.X. Wu, D.J. Thompson: A double Timoshenko beam model for vertical vibration analysis of railway track at high frequencies, Journal of Sound and Vibration 224 (1999) 329–348. [Google Scholar]
  7. T. Mazilu: Green’s functions for analysis of dynamic response of wheel/rail to vertical excitation, Journal of Sound and Vibration 306 (2007) 31–58. [Google Scholar]
  8. A. Pieringer, W. Kropp, D.J. Thompson: Investigation of the dynamic contact filter effect in vertical wheel/rail interaction using a 2D and a 3D non-Hertzian contact model, Wear 271 (2011) 328–338. [Google Scholar]
  9. T. Clapp, A. Eberhardt, C. Kelley: Development and validation of a method for approximating road surface texture-induced contact pressure in tire-pavement interaction, Tire Science and Technology 16 (1988) 2–17. [CrossRef] [Google Scholar]
  10. F. Wullens, W. Kropp: A three-dimensional contact model for tyre/road interaction in rolling conditions, Acta Acustica United with Acustica 90 (2004) 702–711. [Google Scholar]
  11. E. Rustighi, S.J. Elliott: Stochastic road excitation and control feasibility in a 2D linear tyre model, Journal of Sound and Vibration 300 (2007) 490–501. [Google Scholar]
  12. W. Kropp, P. Sabiniarz, H. Brick, T. Beckenbauer: On the sound radiation of a rolling tyre, Journal of Sound and Vibration 331 (2012) 1789–1805. [Google Scholar]
  13. H. Hertz, D.E. Jones, G.A. Schott: Miscellaneous Papers, London: Macmillan. Macmillan and co., New York, 1896. [Google Scholar]
  14. S. Sim, K.J. Kim: A method to determine the complex modulus and poisson’s ratio of viscoelastic materials for FEM applications, Journal of Sound and Vibration 141 (1990) 71–82. [Google Scholar]
  15. T. Paviot: pythonOCC (Jun 2007). [Google Scholar]
  16. H. Si: Tetgen (2013). [Google Scholar]
  17. F. Hecht, O. Pironneau, A. Le Hyaric: FreeFem++ (July 2017) [Google Scholar]
  18. ISO 18437-5:2011: Mechanical vibration and shock – Characterization of the dynamic mechanical properties of visco-elastic materials – Part 5: Poisson ratio based on comparison between measurements and finite element analysis, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.