Open Access
Acta Acust.
Volume 4, Number 3, 2020
Article Number 8
Number of page(s) 13
Section Acoustic Materials and Metamaterials
Published online 19 June 2020
  1. J.-F. Allard, N. Atalla: Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. 2nd edn., Wiley, Hoboken, NJ, 2009. [CrossRef] [Google Scholar]
  2. T. Weisser, J.-P. Groby, O. Dazel, F. Gaultier, E. Deckers, S. Futatsugi, L. Monteiro: Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach. The Journal of the Acoustical Society of America 139 (2016) 617–629. [CrossRef] [PubMed] [Google Scholar]
  3. N. Jiménez, V. Romero-García, V. Pagneux, J.-P. Groby: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports 7 (2017) 13595. [CrossRef] [PubMed] [Google Scholar]
  4. C. Boutin: Acoustics of porous media with inner resonators. The Journal of the Acoustical Society of America 134 (2013) 4717–4729. [CrossRef] [PubMed] [Google Scholar]
  5. M.E. Beutel, C. Jünger, E.M. Klein, P. Wild, K. Lackner, M. Blettner, H. Binder, M. Michal, J. Wiltink, E. Brähler, T. Münzel: Noise annoyance is associated with depression and anxiety in the general population – The contribution of aircraft noise. PLoS One 11 (2016) e0155357. [CrossRef] [PubMed] [Google Scholar]
  6. The European Parliament: Regulation (EU) No 540/2014 of the European Parliament and of the Council of 16 April 2014 on the sound level of motor vehicles and of replacement silencing systems, and amending Directive 2007/46/EC and repealing Directive 70/157/EEC. Official Journal of the European Communities L158 (2014) 131–195. [Google Scholar]
  7. W. Babisch: The noise/stress concept, risk assessment and research needs. Noise & Health 4 (2002) 1–11. [Google Scholar]
  8. F. Chevillotte: Controlling sound absorption by an upstream resistive layer. Applied Acoustics 73 (2012) 56–60. [CrossRef] [Google Scholar]
  9. S. Sugie, J. Yoshimura, H. Ogawa: Absorption characteristics of fibrous material covered with perforated facing and film. Acoustical Science and Technology 27 (2006) 87–96. [Google Scholar]
  10. N. Atalla, F. Sgard: Modeling of perforated plates and screens using rigid frame porous models. Journal of Sound and Vibration 303 (2007) 195–208. [Google Scholar]
  11. M. Gaborit, O. Dazel, P. Göransson: A simplified model for thin acoustic screens. The Journal of the Acoustical Society of America 144 (2018) EL76–EL81. [CrossRef] [PubMed] [Google Scholar]
  12. A.D. Pierce: Acoustics: An Introduction to its Physical Principles and Applications. 1989th ed., Acoustical Society of America, Woodbury, NY, 1989. [Google Scholar]
  13. L. Jaouen, F.-X. Bécot: Acoustical characterization of perforated facings. The Journal of the Acoustical Society of America 129 (2011) 1400–1406. [CrossRef] [PubMed] [Google Scholar]
  14. O. Dazel, B. Brouard, C. Depollier, S. Griffiths: An alternative Biot’s displacement formulation for porous materials. JASA 121 (2007) 3509. [CrossRef] [Google Scholar]
  15. Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics 70 (1991) 1975. [Google Scholar]
  16. D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
  17. ISO: ISO 9053-1 – Acoustics – Determination of Airflow Resistance – Static Airflow Method. 2018. [Google Scholar]
  18. ISO: ISO 10534-2 Acoustics – Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes – Part 2: Transfer-Function Method. 1998. [Google Scholar]
  19. M. Gaborit, L. Jaouen, O. Dazel, P. Göransson: Statistical characterisation and response of acoustic screens and two-layers systems (data set). Zenodo. 2019. [Google Scholar]
  20. Matelys: TubeCell. 2019. [Google Scholar]
  21. T. Iwase, Y. Izumi: A new sound tube measuring method for propagation constant in porous material – Method without any air space at the back of test material, Journal of the Acoustical Society of Japan 52 (1996) 411–419. [Google Scholar]
  22. T. Iwase, Y. Izumi, R. Kawabata: A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material, in INTER-NOISE and NOISE-CON Congress and Conference Proceedings Vol. 1998, INCE. 1998. pp. 1265–1268. [Google Scholar]
  23. R. Panneton, X. Olny: Acoustical determination of the parameters governing viscous dissipation in porous media. The Journal of the Acoustical Society of America 119 (2006) 2027. [CrossRef] [PubMed] [Google Scholar]
  24. X. Olny, R. Panneton: Acoustical determination of the parameters governing thermal dissipation in porous media. The Journal of the Acoustical Society of America 123 (2008) 814–824. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.