Open Access
Issue
Acta Acust.
Volume 4, Number 3, 2020
Article Number 9
Number of page(s) 12
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2020008
Published online 23 June 2020
  1. J. Woodhouse: On the synthesis of Guitar Plucks. Acta Acustica United With Acustica 90 (2004) 928–944. [Google Scholar]
  2. P.M. Morse, K.U. Ingard: Theoretical Acoustics. Princeton University Press, Princeton, 1968. [Google Scholar]
  3. S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. John Wiley & Sons, Hoboken, 2009. [Google Scholar]
  4. A. Paté, J. Le Carrou, B. Fabre: Predicting the decay time of solid body electric guitar tones. The Journal of the Acoustical Society of America 135 (2014) 3045–3055. [CrossRef] [PubMed] [Google Scholar]
  5. M. Ducceschi, S. Bilbao: Linear stiff string vibrations in musical acoustics: Assessment and comparison of models. The Journal of the Acoustical Society of America 140 (2016) 2445–2454. [CrossRef] [PubMed] [Google Scholar]
  6. A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods. The Journal of the Acoustical Society of America 95 (1994) 1112–1118. [Google Scholar]
  7. N. Giordano: Finite-difference modeling of the piano. The Journal of the Acoustical Society of America 119 (2006) 3291–3291. https://doi.org/10.1121/1.4808919. [Google Scholar]
  8. J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith: The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides. The Journal of the Acoustical Society of America 114 (2003) 1095–1107. [CrossRef] [PubMed] [Google Scholar]
  9. É. Ducasse: On waveguide modeling of stiff piano strings. The Journal of the Acoustical Society of America 118 (2005) 1776–1781. [CrossRef] [PubMed] [Google Scholar]
  10. J. Woodhouse: Plucked guitar transients: Comparison of measurements and synthesis. Acta Acustica United With Acustica 90 (2004) 945–965. [Google Scholar]
  11. J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano. The Journal of the Acoustical Society of America 134 (2013) 648–665. [CrossRef] [PubMed] [Google Scholar]
  12. C. Issanchou, S. Bilbao, J. Le Carrou, C. Touzé, O. Doaré: A modal-based approach to the nonlinear vibration of strings against a unilateral obstacle: Simulations and experiments in the pointwise case. Journal of Sound and Vibration 393 (2017) 229–251. [Google Scholar]
  13. C. Issanchou, J. Le Carrou, C. Touzé, B. Fabre, O. Doaré: String/frets contacts in the electric bass sound: Simulations and experiments. Applied Acoustics 129 (2018) 217–228. [CrossRef] [Google Scholar]
  14. M. Zollner: Physik der Elektrogitarre (in German). Digitaldruckfabrik, Leipzig, 2014. [Google Scholar]
  15. A. Askenfelt, E.V. Jansson: From touch to string vibrations. III: String motion and spectra. The Journal of the Acoustical Society of America 93 (1993) 2181–2196. [Google Scholar]
  16. J. Pakarinen, M. Karjalainen: An apparatus for measuring string vibration using electric field sensing, in Proceedings Stockholm Music Acoustics Conference. 2003. pp. 739–742. [Google Scholar]
  17. J. Le Carrou, D. Chadefaux, L. Seydoux, B. Fabre: A low-cost high-precision measurement method of string motion. Journal of Sound and Vibration 333 (2014) 3881–3888. [Google Scholar]
  18. N. Plath: High-speed camera displacement measurement (HCDM) technique of string vibration, in Proceedings of the Stockholm Music Acoustics Conference. 2013. pp. 188–192. [Google Scholar]
  19. J. Le Carrou, F. Gautier, N. Dauchez, J. Gilbert: Modelling of sympathetic string vibrations. Acta Acustica United With Acustica 91 (2005) 277–288. [Google Scholar]
  20. A. Paté, J. Le Carrou, A. Givois, A. Roy: Influence of plectrum shape and jack velocity on the sound of the harpsichord: An experimental study. The Journal of the Acoustical Society of America 141 (2017) 1523–1534. [CrossRef] [PubMed] [Google Scholar]
  21. D. Chadefaux, J. Le Carrou, S. Le Conte, M. Castellengo. Analysis of the harpsichord plectrum-string interaction, in: Proceedings of the Stockholm Music Acoustics Conference (SMAC). 2013. [Google Scholar]
  22. D. Chadefaux, J. Le Carrou, B. Fabre: A model of harp plucking. The Journal of the Acoustical Society of America 133 (2013) 2444–2455. [CrossRef] [PubMed] [Google Scholar]
  23. B. Bank, M. Karjalainen: Passive admittance matrix modeling for guitar synthesis, in Proc. Conf. on Digital Audio Effects, Graz. 2010. pp. 3–8. [Google Scholar]
  24. M. Hanss, P. Bestle, P. Eberhard: A reproducible excitation mechanism for analyzing electric guitars. PAMM 15 (2015) 45–46. [CrossRef] [Google Scholar]
  25. C.H. Hodges, J. Power, J. Woodhouse: The use of the sonogram in structural acoustics and an application to the vibrations of cylindrical shells. Journal of Sound and Vibration 101 (1985) 203–218. [Google Scholar]
  26. H. Mansour, The Bowed String and its Playability: Theory, Simulation and Analysis. PhD thesis, McGill University Libraries, Montreal, QC, 2016. [Google Scholar]
  27. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt: Concepts and Applications of Finite Element Analysis. John Wiley & Sons, New York, 2002. [Google Scholar]
  28. C. Valette: Mechanics of Musical Instruments, Chapter The mechanics of vibrating strings. Springer, New York, 1995. pp. 115–183. [Google Scholar]
  29. C. Desvages, S. Bilbao, M. Ducceschi: Improved frequency-dependent damping for time domain modelling of linear string vibration, in Proceedings of Meetings on Acoustics ICA, Vol. 1, Acoustical Society of America. 2016. [Google Scholar]
  30. V. Debut, J. Antunes, M. Marques, M. Carvalho: Physics-based modeling techniques of a twelve-string Portuguese guitar: A non-linear time-domain computational approach for the multiple-strings/bridge/soundboard coupled dynamics. Applied Acoustics 108 (2016) 3–18. [CrossRef] [Google Scholar]
  31. Abaqus: Analysis User’s Guide. Simulia, Providence, 2014. [Google Scholar]
  32. J. Chabassier, S. Imperiale: Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string. Wave Motion 50 (2013) 456–480. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.