Open Access
Issue
Acta Acust.
Volume 4, Number 4, 2020
Article Number 12
Number of page(s) 12
Section Ultrasonics
DOI https://doi.org/10.1051/aacus/2020013
Published online 13 August 2020
  1. T.G. Leighton: Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 472, 2185 (2016). Article ID 20150624. https://doi.org/10.1098/rspa.2015.0624. [Google Scholar]
  2. B.W. Lawton: Damage to Human Hearing by Airborne Sound of Very High Frequency or Ultrasonic Frequency. Contract Research Report 343. HSE Books, University of Southampton and Health & Safety Executive, Sudbury, Suffolk CO10 2WA, England, United Kingdom, 2001. [Google Scholar]
  3. Physikalisch-Technische Bundesanstalt, Editor: EMPIR 15HLT03 Ears II – Metrology for Modern Hearing Assessment and Protecting Public Health from Emerging Noise Sources. Project Website. 2016. URL: http://www.ears-project.eu/ (Visited on 09/07/2019). [Google Scholar]
  4. G. Harvey, A. Gachagan, T. Mutasa: Review of high-power ultrasound-industrial applications and measurement methods. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 61, 3 (2014) 481–495. https://doi.org/10.1109/tuffc.2014.2932. [PubMed] [Google Scholar]
  5. A. Holm, H.W. Persson: Optical diffraction tomography applied to airborne ultrasound. Ultrasonics 31, 4 (1993) 259–265. https://doi.org/10.1016/0041-624x(93)90019-v. [Google Scholar]
  6. O.B. Matar, C. Rossignol, L. Pizarro, S.D. Santos, F. Patat: Mapping of airborne ultrasonic fields using optical heterodyne probing and tomography reconstruction, in 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 00CH37121) (Oct. 22, 2000), IEEE. 2000. https://doi.org/10.1109/ultsym.2000.921521. [Google Scholar]
  7. R. Schöneweiß, C. Kling, C. Koch: Datasets of High Spatial Resolution Scans of the Airborne Ultrasound Field at the Front, Back and Left Side of an Ultrasonic Welding Machine. Dataset. Version 1.0.0. Zenodo, 2020. https://doi.org/10.5281/zenodo.3550527. [Google Scholar]
  8. R. Schöneweiß, C. Kling, C. Koch: Free-Field Sensitivity of Four Electro-Acoustic Measuring Chains at 0° Incidence Angle in the Frequency Range 0.25 kHz to 100 kHz. Dataset. Version 1.0.0. Zenodo, 2020. https://doi.org/10.5281/zenodo.3552412. [Google Scholar]
  9. H. Kuttruff: Room Acoustics. 5th ed. Spon Press, 2009. [Google Scholar]
  10. L.B. Evans, H.E. Bass, L.C. Sutherland: Atmospheric absorption of sound: Theoretical predictions. The Journal of the Acoustical Society of America 51, 5B (1972) 1565–1575. https://doi.org/10.1121/1.1913000. [Google Scholar]
  11. C. Ullisch-Nelken, H. Kusserow, A. Wolff: Analysis of the noise exposure and the distribution of machine types at ultrasound related industrial workplaces in Germany. Acta Acustica United With Acustica 104, 5 (2018) 733–736. https://doi.org/10.3813/aaa.919212. [Google Scholar]
  12. International Electrotechnical Commission (IEC): IEC 62127-1:2007-08+COR1:2008+AMD1:2013-02 CSV (Consolidated Version) – Ultrasonics – Hydrophones – Part 1: Measurement and Characterization of Medical Ultrasonic Fields up to 40 MHz. Norm. International Electrotechnical Commission (IEC), 2013. [Google Scholar]
  13. A. Wolff, C. Ullisch-Nelken, R. Schöneweiß, C. Kling, H. Kusserow, M. Fletcher, B. Lineton, C. Koch: Noise Exposure at Ultrasound Related Industrial Workplaces and Public Sites. Dataset. Version 1.0.0. 2019. https://doi.org/10.5281/zenodo.3163215. [Google Scholar]
  14. K.F. Herzfeld, T.A. Litovitz: Absorption and dispersion of ultrasonic waves, in Pure and Applied Physics, Vol. 7, Academic Press, New York, NY [u.a.]. 1959. [Google Scholar]
  15. H.E. Bass, F.D. Shields: Absorption of sound in air: High-frequency measurements. The Journal of the Acoustical Society of America 62, 3 (1977) 571–576. https://doi.org/10.1121/1.381576. [Google Scholar]
  16. H.E. Bass, L.C. Sutherland, A.J. Zuckerwar, D.T. Blackstock, D.M. Hester: Atmospheric absorption of sound: Further developments. The Journal of the Acoustical Society of America 97, 1 (1995) 680–683. https://doi.org/10.1121/1.412989. [Google Scholar]
  17. H.E. Bass, L.C. Sutherland, A.J. Zuckerwar, D.T. Blackstock, D.M. Hester: Erratum: Atmospheric absorption of sound: Further developments [J. Acoust. Soc. Am. 97, 680–683 (1995)]. The Journal of the Acoustical Society of America 99, 2 (1996) 1259–1259. https://doi.org/10.1121/1.415223. [Google Scholar]
  18. Isel Germany AG: MS 135 HT-2 – MS 200 HT-2. Eichenzell, Germany, 2010. [Google Scholar]
  19. Isel Germany AG: Linear Units with Spindle Drive/LES4 – LES5 – LES6. Eichenzell, Germany, 2018. [Google Scholar]
  20. Isel Germany AG: Automation. Eichenzell, Germany, 2017. [Google Scholar]
  21. GRAS Sound & Vibration A/S: Product Information – GRAS 40BF. 2019. [Google Scholar]
  22. GRAS Sound & Vibration A/S: Product Information – GRAS 40DP. 2019. [Google Scholar]
  23. GRAS Sound & Vibration A/S: Product Information – GRAS 12AQ. 2019. [Google Scholar]
  24. V.A. Šutilov: Physik des Ultraschalls. Ed. and Trans. Russian by P. Hauptmann. Akademie-Verlag, Berlin, 1984. [Google Scholar]
  25. F.J. Harris: On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE 66, 1 (1978) 51–83. https://doi.org/10.1109/proc.1978.10837. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.