Open Access
Issue
Acta Acust.
Volume 4, Number 5, 2020
Article Number 22
Number of page(s) 17
Section Flow Acoustics
DOI https://doi.org/10.1051/aacus/2020021
Published online 14 October 2020
  1. M. Hornikx, M. Kaltenbacher, S. Marburg: A platform for benchmark cases in computational acoustics. Acta Acustica United With Acustica 1010, 4 (2015) 811–820. https://doi.org/10.3813/aaa.918875. [CrossRef] [Google Scholar]
  2. T. Carolus, T. Zhu, M. Sturm, A low pressure axial fan for benchmarking prediction methods for aerodynamic performance and sound, in Proceedings of International Conference of Fan Noise, Technology and Numerical Methods, Lyon. 2015. [Google Scholar]
  3. European Acoustics Association: Benchmark Cases for Computational Acoustics. 2017.http://eaa-bench.mec.tuwien.ac.at/. [Google Scholar]
  4. S. Magne, S. Moreau, A. Berry: Subharmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow. Journal of the Acoustical Society of America 137, 1 (2015) 228–237. [CrossRef] [Google Scholar]
  5. T. Schröder, P. Silkeit, O. Estorff: Influence of source term interpolation on hybrid computational aeroacoustics in finite volumes, in InterNoise 2016. 2016, pp. 1598–1608. [Google Scholar]
  6. T. Zhu, D. Lallier-Daniels, M. Sanjosé, S. Moreau, T. Carolus: Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans. Journal of Sound and Vibration 417 (2018) 198–215. [Google Scholar]
  7. A. Pogorelov, M. Meinke, W. Schröder: Effects of tip-gap width on the flow field in an axial fan. International Journal of Heat and Fluid Flow 61 (2016) 466–481. [Google Scholar]
  8. A. Corsini, G. Delibra, A.G. Sheard: On the role of leading-edge bumps in the control of stall onset in axial fan blades. ASME J Fluids Eng 135, 8 (2013) 081104. https://doi.org/10.1115/1.4024115. [CrossRef] [Google Scholar]
  9. S. Schoder, C. Junger, M. Weitz, M. Kaltenbacher: Conservative source term interpolation for hybrid aeroacoustic computations, in 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands. 2019. [Google Scholar]
  10. F. Farassat: Derivation of Formulations 1 and 1A of Farassat. Technical Report NASA/TM-2007-214853, L-19318, NASA Langley Research Center, Hampton, VA, United States, 2007. [Google Scholar]
  11. M. Kaltenbacher, A. Hueppe, A. Reppenhagen, F. Zenger, S. Becker: Computation aeroacoustics for rotating systems with application to an axial fan. AIAA Journal 55, 11 (2017) 3831–3838. https://doi.org/10.2514/1.J055931. [CrossRef] [Google Scholar]
  12. F. Zenger, C. Junger, M. Kaltenbacher, S. Becker: A benchmark case for aerodynamics and aeroacoustics of a low pressure axial fan, in SAE Technical Paper 2016-01-1805. 2016. https://doi.org/10.4271/2016-01-1805. [Google Scholar]
  13. C.L. Ladson, J. Brooks, W. Cuyler: Development of a computer program to obtain ordinates for NACA 4-digit, 4-digit modified, 5-digit, and 16 series airfoils. Technical report, NASA Langley Research Center, Hampton, VA, United States, 1975. [Google Scholar]
  14. K. Yousefi, A. Razeghi: Determination of the critical Reynolds number for flow over symmetric NACA airfoils, in 2018 AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics. 2018. https://doi.org/10.2514/6.2018-0818. [Google Scholar]
  15. International Organization for Standardization: ISO 5801:2007 Fans: Performance Testing Using Standardized Airways. 2007. [Google Scholar]
  16. F.J. Krömer: Sound emission of low-pressure axial fans under distorted inflow conditions. PhD Thesis. FAU, Erlangen, 2018. [Google Scholar]
  17. Akustik – Bestimmung der Schallleistungs – und Schallenergiepegel von Geräuschquellen aus Schalldruckmessungen – Hüllflächenverfahren der Genauigkeitsklasse 2 für ein im Wesentlichen freies Schallfeld über einer reflektierenden Ebene. DIN EN ISO 3744:2010, 2010. [Google Scholar]
  18. S. Moreau, M. Sanjose: Sub-harmonic broadband humps and tip noise in low-speed ring fans. The Journal of the Acoustical Society of America 139, 1 (2016) 118–127. [CrossRef] [PubMed] [Google Scholar]
  19. T. Zhu, D. Lallier-Daniels, M. Sanjosé, S. Moreau, T. Carolus: Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans. Journal of Sound and Vibration 417 (2018) 198–215. [Google Scholar]
  20. Star-CCM+ 12.06.011 User Guide. Siemens Product Lifecycle Management Software Inc., 2017. [Google Scholar]
  21. M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow 29, 6 (2008) 1638–1649. [Google Scholar]
  22. P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics 200, 3 (2006) 181–195. https://doi.org/10.1007/s00162-006-0015-0. [Google Scholar]
  23. F.R. Menter, M. Kuntz: Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles, in The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Springer, Berlin Heidelberg. 2004, pp. 339–352. https://doi.org/10.1007/978-3-540-44419-0_30. [CrossRef] [Google Scholar]
  24. L.F. Richardson: The approximate arithmetical solution by finite differences with an application to stresses in masonry dams. Philosophical Transactions of the Royal Society of America 210 (1911) 307–357. [Google Scholar]
  25. J. Vassberg, E. Tinoco, M. Mani, B. Rider, T. Zickuhr, D. Levy, O. Brodersen, B. Eisfeld, S. Crippa, R. Wahls, J. Morrison, D. Mavriplis, M. Murayama: Summary of the fourth AIAA CFD drag prediction workshop, in 28th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics. 2010. https://doi.org/10.2514/6.2010-4547. [Google Scholar]
  26. C. Junger: Computational aeroacoustics for the characterization of noise sources in rotating systems, PhD Thesis. TU Wien, 2019. [Google Scholar]
  27. S.B. Pope: Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6 (2004) 35. [Google Scholar]
  28. I.B. Celik, Z.N. Cehreli, I. Yavuz: Index of resolution quality for large eddy simulations. Journal of Fluids Engineering 1270, 5 (2005) 949. https://doi.org/10.1115/1.1990201. [Google Scholar]
  29. VSC-3: Vienna Scientific Cluster 3 – Innovative Oil Cooling. 2014.http://typo3.vsc.ac.at/systems/vsc-3/. [Google Scholar]
  30. G. Haller: An objective definition of a vortex. Journal of Fluid Mechanics 525 (2005) 1–26. https://doi.org/10.1017/s0022112004002526. [Google Scholar]
  31. A. Hüppe, J. Grabinger, M. Kaltenbacher, A. Reppenhagen, W. Kühnel: A non-conforming finite element method for computational aeroacoustics in rotating systems, in American Institute of Aeronautics and Astronautics Conference 2014. 2014. https://doi.org/10.2514/6.2014-2739. [Google Scholar]
  32. A. Hüppe, J. Grabinger, M. Kaltenbacher, A. Reppenhagen, W. Kühnel: A non-conforming finite element method for computational aeroacoustics in rotating systems, in American Institute of Aeronautics and Astronautics Conference 2014. 2014. https://doi.org/10.2514/6.2014-2739. [Google Scholar]
  33. R. Ewert, W. Schröder: Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188 (2003) 365–398. [Google Scholar]
  34. M. Kaltenbacher, A. Hüppe, J. Grabinger, B. Wohlmuth: Modeling and finite element formulation for acoustic problems including rotating domains. AIAA Journal 54, 12 (2016) 3768–3777. [CrossRef] [Google Scholar]
  35. M. Kaltenbacher: Numerical Simulation of Mechatronic Sensors and Actuators, 3rd edn. Springer-Verlag, Berlin Heidelberg, 2015. ISBN 978-3-642-40170-1. https://doi.org/10.1007/978-3-642-40170-1. [Google Scholar]
  36. A. Hüppe, M. Kaltenbacher, A. Reppenhagen, F. Zenger, S. Becker: Computational aeroacoustics for ducted fans, in International Congress on Sound and Vibration. 2015. [Google Scholar]
  37. B. Kaltenbacher, M. Kaltenbacher, I. Sim: A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. Journal of Computational Physics 2350 (2013) 407–422. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2012.10.016. [Google Scholar]
  38. M. Ainsworth: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM Journal on Numerical Analysis 420, 2 (2004) 553–575. ISSN 0036-1429. https://doi.org/10.1137/S0036142903423460. [Google Scholar]
  39. P. Martnez-Lera, C. Schram: Correction techniques for the truncation of the source field in acoustic analogies. The Journal of the Acoustical Society of America 1240, 6 (2008) 3421–3429. https://doi.org/10.1121/1.2999555. [Google Scholar]
  40. A.A. Oberai, F. Roknaldin, T.J. Hughes: Computational procedures for determining structural-acoustic response due to hydrodynamic sources. Computer Methods in Applied Mechanics and Engineering 190 (2000) 345–361. [Google Scholar]
  41. C. Bogey, C. Bailly, D. Juvé: Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA Journal 380, 12 (2000) 2210–2218. https://doi.org/10.2514/2.906. [CrossRef] [Google Scholar]
  42. M.L. Munjal, M. Vorländer, P. Költzsch, M. Ochmann, A. Cummings: Formulas of Acoustics. Springer-Verlag GmbH, 2008. ISBN 3540768327. [Google Scholar]
  43. T.J.R. Hughes: The Finite Element Method. Dover Publ., Mineola, New York, 2000, pp. 532–535. [Google Scholar]
  44. F. Krömer, A. Renz, S. Becker: Experimental investigation of the sound reduction by leading-edge serrations in axial fans. AIAA Journal 560, 5 (2018) 2086–2090. https://doi.org/10.2514/1.j056355. [CrossRef] [Google Scholar]
  45. M.S. Howe: Theory of Vortex Sound, Vol. 33. Cambridge University Press, 2003. [Google Scholar]
  46. K. Takeishi, M. Matsuura, S. Aoki, T. Sato: An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles, in Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration, ASME. 1989. https://doi.org/10.1115/89-gt-187 [Google Scholar]
  47. K.S. Brentner, F. Farassat: Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA Journal 360, 8 (1998) 1379–1386. https://doi.org/10.2514/2.558. [CrossRef] [Google Scholar]
  48. M. Sturm, M. Sanjose, S. Moreau, T. Carolus: Aeroacoustic simulation of an axial fan including the full test rig by using lattice Boltzmann method, in Fan 2015 Conference. 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.