Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 7
Number of page(s) 19
Section Auditory Quality of Systems
DOI https://doi.org/10.1051/aacus/2020032
Published online 13 January 2021
  1. R.H. Lyon: An introduction to sound quality. Journal of Sound and Vibration 6 (2003) 6. [Google Scholar]
  2. M. Gauthier: Identification et hiérarchisation des sources et chemins de transfert vibro-acoustiques d’un véhicule récréatif. Mémoire de maîtrise. Université de Sherbrooke, QC, Canada, 2017. [Google Scholar]
  3. J. Blauert, U. Jekosch: Sound-quality evaluation-a multi-layered problem. Acta Acustica United With Acustica 83, 5 (1997) 747–753. [Google Scholar]
  4. N. Otto, S. Amman, C. Eaton, S. Lake: Guidelines for jury evaluations of automotive sounds. Journal of Sound and Vibration (2001) 1–14. [Google Scholar]
  5. S. Chen, D. Wang: Vehicle interior sound quality analysis by using grey relational analysis. SAE International Journal of Passenger Cars Mechanical Systems 7, 1 (2014) 355–366. [Google Scholar]
  6. T.G. Kim, S.-K. Lee, H.H. Lee: Characterization and quantification of luxury sound quality in premium-class passenger cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, 3 (2009) 343–353. [CrossRef] [Google Scholar]
  7. R. Guski: Psychological methods for evaluating sound quality and assessing acoustic information. Acta Acustica United With Acustica 83, 5 (1997) 765–774. [Google Scholar]
  8. G. Lorho: Individual vocabulary profiling of spatial enhancement systems for stereo headphone reproduction. Presented at the AES 119th Convention, New York, USA, 2005. [Google Scholar]
  9. T. Lokki, J. Pätynen, A. Kuusinen, H. Vertanen, S. Tervo: Concert hall acoustics assessment with individually elicited attributes. Journal of the Acoustical Society of America 194, 2 (2011) 835–849. [CrossRef] [Google Scholar]
  10. C.E. Osgood: The nature and measurement of meaning. Psychological Bulletin 49, 3 (1952) 197–237. [CrossRef] [PubMed] [Google Scholar]
  11. D. Dal Palù, E. Buiatti, G.E. Puglisi, O. Houix, P. Susini, C. De Giorgi, A. Astolfi: The use of semantic differential scales in listening tests: A comparison between context and laboratory test conditions for the rolling sounds of office chairs. Applied Acoustics 127 (2017) 270–283. [CrossRef] [Google Scholar]
  12. G. Von Bismarck: Timbre of steady sounds: Factorial investigation of its verbal attributes. Acustica 30 (1974) 146–159. [Google Scholar]
  13. P. Susini, O. Houix, N. Misdariis, B. Smith, S. Langlois: Instruction’s effect on semantic scale ratings of interior car sounds. Applied Acoustics 70, 3 (2009) 389–403. [CrossRef] [Google Scholar]
  14. R.A. Kendall, E.C. Carterette: Verbal attributes of simultaneous wind instrument timbres. I – von Bismarck’s adjectives. Music Perception 4 (1992) 185–214. [CrossRef] [Google Scholar]
  15. T. Lageat, S. Czellar, G. Laurent: Engineering hedonic attributes to generate perceptions of luxury: Consumer perception of an everyday sound. Marketing Letters 14, 2 (2003) 97–109. [CrossRef] [Google Scholar]
  16. D. Dal Palù, B. Lerma, L.A. Grosso, L. Shtrepi, M. Gasparini, C. De Giorgi, A. Astolfi: Sensory evaluation of the sound of rolling office chairs: An exploratory study for sound design. Applied Acoustics 130 (2018) 195–203. [CrossRef] [Google Scholar]
  17. M.E. Altinsoy, U. Jekosch, The semantic space of vehicle sounds: Developing a semantic differential with regard to customer perception. Journal of the Audio Engineering Society 60, 1/2 (2012) 13–20. [Google Scholar]
  18. T.H. Pedersen, N. Zacharov: How many psychoacoustic attributes are needed? Proceedings of Euronoise 2008, Paris, 2008. [Google Scholar]
  19. J. Delarue, B. Lawlor, M. Rogeaux: Rapid Sensory Profiling Techniques: Applications in New Product Development and Consumer Research. Elsevier, 2014. [Google Scholar]
  20. H.T. Lawless, H. Heymann: Sensory Evaluation of Food Principles and Practices. Springer, NY, 2010. [CrossRef] [Google Scholar]
  21. P. Varela, G. Ares: Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Research International 48, 2 (2012) 893–908. [CrossRef] [Google Scholar]
  22. K.A. Moussaoui, P. Varela: Exploring consumer product profiling techniques and their linkage to a quantitative descriptive analysis. Food Quality and Preference 21, 8 (2010) 1088–1099. [CrossRef] [Google Scholar]
  23. J. Delarue, J.-M. Sieffermann: Sensory mapping using Flash profile. Comparison with a conventional descriptive method for the evaluation of the flavour of fruit dairy products. Food Quality and Preference 15, 4 (2004) 383–392. [CrossRef] [Google Scholar]
  24. H. Stone, J.L. Sidel: 6 – Descriptive Analysis, Sensory Evaluation Practices. Food Science and Technology, 3rd ed. Academic Press, 2004, pp. 201–245. [Google Scholar]
  25. F. Bergeron, C. Astruc, A. Berry, P. Masson: Sound quality assessment of internal automotive road noise using sensory science. Acta Acustica United With Acustica 96, 3 (2010) 580–588. [CrossRef] [Google Scholar]
  26. M. Wankling, B. Fazenda, W.J. Davies: The assessment of low-frequency room acoustic parameters using descriptive analysis. Journal of the Audio Engineering Society 60, 5 (2012) 325–337. [Google Scholar]
  27. N. Kaplanis, S. Bech, S. Tervo, J. Pätynen, T. Lokki, T. Waterschoot, S.H. Jensen: A rapid sensory analysis method for perceptual assessment of automotive audio. Journal of the Audio Engineering Society 65, 1/2 (2017) 130–146. [CrossRef] [Google Scholar]
  28. J. Berg, F. Rumsey: Identification of quality attributes of spatial audio by repertory grid technique. Journal of the Audio Engineering Society 54, 5 (2006) 365–379. [Google Scholar]
  29. S. Le Bagousse, M. Paquier, C. Colomes: Categorization of sound attributes for audio quality assessment – a lexical study. Journal of the Audio Engineering Society 62, 11 (2014) 736–747. [CrossRef] [Google Scholar]
  30. V.-V. Mattila: Semantic analysis of speech quality in mobile communications: descriptive language development and mapping to acceptability. Food Quality and Preference 14, 5 (2003) 441–453. [CrossRef] [Google Scholar]
  31. A. Nykänen: Methods for product sound design. Doctoral dissertation, Luleå Tekniska Universitet, 2008. [Google Scholar]
  32. G. Lemaitre, P. Susini: Timbre, sound quality, and sound design, in Timbre: Acoustics, Perception, and Cognition Siedenburg K, Saitis C, McAdams S, Popper A, Fay R, Editors Springer Handbook of Auditory Research 69. 2019, pp. 245–272. [CrossRef] [Google Scholar]
  33. K. Genuit, A. Fiebig: Sound Design of Electric Vehicles – Challenges and Risks. InterNoise, Melbourne, 2014. [Google Scholar]
  34. L. Langeveld, R. van Egmond, R. Jansen, E. Özcan: Product sound design: Intentional and consequential sounds, in Advances in Industrial Design Engineering Coelho DA, Editor IntechOpen. 2013. [Google Scholar]
  35. P. Davies: Perception-based engineering: Integrating sound perception into engineering design. Presented at the InterNoise 47th I-INCE, Chicago, 2018. [Google Scholar]
  36. E. Parizet, N. Hamzaoui, J. Jacquemoud: Noise assessment in a high-speed train. Applied Acoustics 63, 10 (2002) 1109–1124. [CrossRef] [Google Scholar]
  37. P. Susini, O. Houix, L. Seropian, G. Lemaitre: Is loudness part of a sound recognition process? JASA 146, 2 (2019) EL172–EL176. [CrossRef] [Google Scholar]
  38. S.-H. Shin, J.-G. Ih, T. Hashimoto, S. Hatano: Sound quality evaluation of the booming sensation for passenger cars. Applied Acoustics 70, 2 (2009) 309–320. [CrossRef] [Google Scholar]
  39. H. Fastl, E. Zwicker: Psychoacoustics: Facts and Models, 3rd ed. Springer, Berlin and Heidelberg 22, 2007. [Google Scholar]
  40. G. Kwon, H. Jo, Y.J. Kang: Model of psychoacoustic sportiness for vehicle interior sound: Excluding loudness. Applied Acoustics 136 (2018) 16–25. [CrossRef] [Google Scholar]
  41. B. Efron: Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7, 1 (1979) 1–26. [Google Scholar]
  42. B. Efron, R. Tibshirani: An Introduction to the Bootstrap. Chapman & Hall, 1993. [Google Scholar]
  43. P. Hall: The Bootstrap and Edgeworth Expansion. Springer Series in Statistics. New York, Springer-Verlag, 1992. [CrossRef] [Google Scholar]
  44. C.B. Barber, D.P. Dobkin, H.T. Huhdanpaa: The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22, 4 (1996) 469–483. [Google Scholar]
  45. R. Palm: Utilisation du bootstrap pour les problèmes statistiques liés à l’estimation des paramètres. BASE 6, 3 (2002) 143–153. [Google Scholar]
  46. I.T. Jolliffe: Principal Component Analysis, 2nd ed. Springer Series in Statistics. Springer-Verlag, New York, 2002. [Google Scholar]
  47. W.J. Krzanowski: Principles of Multivariate Analysis. Clarendon Press, Oxford, 2000. [Google Scholar]
  48. C. Duchesne: Multivariate image analysis in mineral processing, in Advanced Control and Supervision of Mineral Processing Plants Sbárbaro D, del Villar R, Editors. Advances in Industrial Control. London, Springer. 2010, pp. 85–142. [CrossRef] [Google Scholar]
  49. D.C. Montgomery: Design and Analysis of Experiments, 8th ed. John Wiley and Sons, 2013. [Google Scholar]
  50. S.S. Shapiro, M.B. Wilk: An analysis of variance test for normality (complete samples). Biometrika 52, 3/4 (1965) 591–611. [CrossRef] [MathSciNet] [Google Scholar]
  51. M. Friedman: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. The Journal of the American Statistical Association 32, 200 (1937) 675–701. [CrossRef] [Google Scholar]
  52. R. Broand, K.S. Age: Principal component analysis. RSC. Analytical Methods 6, 9 (2014) 2812–2831. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.