Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 17
Number of page(s) 15
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2021010
Published online 09 April 2021
  1. E. Salomons, D. Van Maercke, J. Defrance, F. de Roo : The harmonoise sound propagation model. Acta Acustica united with Acustica 97, 1 (2011) 62–74. [Google Scholar]
  2. J. Kang : Urban Sound Environment. Taylor & Francis, 2006. [Google Scholar]
  3. G. Brambilla, L. Maffei : Perspective of the soundscape approach as a tool for urban space design. Noise Control Engineering Journal 58, 5 (2010) 532–539. [Google Scholar]
  4. J.B. Keller , Geometrical theory of diffraction. Journal of the Optical Society of America 52, 2 (1962) 116–130. [Google Scholar]
  5. J.B. Allen, D.A. Berkley : Image method for efficiently simulating small-room acoustics. Journal of the Acoustical Society of America 65, 4 (1979) 943–950. [Google Scholar]
  6. M. Born, E. Wolf : Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, 1997. [Google Scholar]
  7. H.M. MacDonald : Electric Waves. The University Press, 1902. [Google Scholar]
  8. H.M. MacDonald : A class of diffraction problems. Proceedings of the London Mathematical Society s2_14, 1 (1915) 410–427. [Google Scholar]
  9. A. Sommerfeld : Mathematische theorie der diffraction. Mathematische Annalen 47, 2–3 (1896) 317–374. [Google Scholar]
  10. J.B. Keller : Diffraction by an aperture. Journal of Applied Physics 28, 4 (1957) 426–444. [Google Scholar]
  11. M.A. Biot, I. Tolstoy : Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction. Journal of the Acoustical Society of America 29, 3 (1957) 381–391. [Google Scholar]
  12. J.H. Bremhorst : Impulse wave diffraction by rigid wedges and plates. PhD thesis, Naval Postgraduate School, Monterey, California, 1978. [Google Scholar]
  13. J. Bremhorst, H. Medwin : Impulse wave diffraction by rigid wedges and plates. Journal of the Acoustical Society of America 64, S1 (1978) S64. [Google Scholar]
  14. W.A. Kinney, C.S. Clay : A comparison between the Biot-Tolstoy exact solution for wedge diffraction and a related solution that involves the Kirchhoff approximation. Journal of the Acoustical Society of America 68, S1 (1980) S1. [Google Scholar]
  15. H. Medwin : Shadowing by finite noise barriers. Journal of the Acoustical Society of America 69, 4 (1981) 1060–1064. [Google Scholar]
  16. H. Medwin, E. Childs, G.M. Jebsen : Impulse studies of double diffraction: A discrete Huygens interpretation. Journal of the Acoustical Society of America 72, 3 (1982) 1005–1013. [Google Scholar]
  17. Z. Maekawa : Noise reduction by screens. Applied Acoustics 1, 3 (1968) 157–173. [Google Scholar]
  18. S.W. Redfearn : Some acoustical source-observer problems. Philosophical Magazine 30, 200 (1940) 223–236. [Google Scholar]
  19. International Organization for Standardization : ISO-9613-2: Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation, 1st Ed., 1986. [Google Scholar]
  20. A.D. Pierce : Diffraction of sound around corners and over wide barriers. Journal of the Acoustical Society of America 55, 5 (1974) 941–955. [Google Scholar]
  21. P. Svensson, R. Fred, J. Vanderkooy : An analytic secondary source model of edge diffraction impulse responses. Journal of the Acoustical Society of America 106 (1999) 2331. [Google Scholar]
  22. R.R. Torres, M. Kleiner : Audibility of edge diffraction in auralization of a stage house, in Proceedings of the 16th International Congress on Acoustics, 1998. [Google Scholar]
  23. R. Torres, N. de Rycker, M. Kleiner : Edge diffraction and surface scattering in concert halls: physical and perceptual aspects. Journal of Temporal Design in Architecture and the Environment 4, 1 (2004) 52–58. [Google Scholar]
  24. R.R. Torres, U. Peter Svensson, M. Kleiner : Computation of edge diffraction for more accurate room acoustics auralization. Journal of the Acoustical Society of America 109, 2 (2001) 600–610. [Google Scholar]
  25. D. Schröder, A. Pohl : Real-time hybrid simulation method including edge diffraction, in EAA Auralization Symposium, 15-17 June 2009, Espoo, Finland 39, 2009. [Google Scholar]
  26. Tapio Lokki, Peter Svensson, Lauri Savioja : An efficient auralization of edge diffraction, in Audio Engineering Society Conference: 21st International Conference: Architectural Acoustics and Sound Reinforcement. Audio Engineering Society, 2002. [Google Scholar]
  27. P.T. Calamia, U.P. Svensson : Edge subdivision for fast diffraction calculations, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005, pp. 187–190, 2005. [Google Scholar]
  28. U. Peter Svensson, P.T. Calamia : Edge-diffraction impulse responses near specular-zone and shadow-zone boundaries. Acta Acustica united with Acustica 92, 4 (2006) 501–512. [Google Scholar]
  29. A. Asheim, U. Peter Svensson : Efficient evaluation of edge diffraction integrals using the numerical method of steepest descent. Journal of the Acoustical Society of America 128, 4 (2010) 1590–1597. [Google Scholar]
  30. P.T. Calamia, U.P. Svensson : Fast time-domain edge-diffraction calculations for interactive acoustic simulations. EURASIP Journal on Advances in Signal Processing 2007, 1 (2007) 186–186. [Google Scholar]
  31. P.T. Calamia, B.E. Markham, U. Peter Svensson : Diffraction culling for virtual-acoustic simulations. Acta Acustica united with Acustica 94, 6 (2008) 907–920. [Google Scholar]
  32. P. Svensson, A. Asheim : Time-domain formulation of an edge source integral equation. Proceedings of Meetings on Acoustics. Proc. ICA 2013 Montreal 19, 1 (2013). [Google Scholar]
  33. U. Peter Svensson, A. Asheim : An edge-source integral equation for the calculation of scattering. Journal of the Ascoustical Society of America 132, 3 (2012) 1889–1889. [Google Scholar]
  34. M. Taylor, A. Chandak, Z. Ren, C. Lauterbach, D. Manocha : Fast edge-diffraction for sound propagation in complex virtual environments, in EAA Auralization Symposium, 2009. p. 15–17. [Google Scholar]
  35. U.M. Stephenson, U.P. Svensson , An improved energetic approach to diffraction based on the uncertainty principle, in 19th International Congress on Acoustics (ICA), September 2007, Madrid, Spain, 2007. [Google Scholar]
  36. Uwe M. Stephenson : Quantized pyramidal beam tracing-a new algorithm for room acoustics and noise immission prognosis. Acta Acustica united with Acustica 82, 3 (1996) 517–525. [Google Scholar]
  37. U.M. Stephenson : An energetic approach for the simulation of diffraction within ray tracing based on the uncertainty relation. Acta Acustica united with Acustica 96, 3 (2010) 516–535. [Google Scholar]
  38. S. Weigand, U.M. Stephenson, J. Schaal : Simulation of multiple sound particle diffraction based on the uncertainty relation-a revolution in noise immission prognosis; part ii: Evaluation by measurements, in Proceedings of the 10th European conference on noise control (Euronoise 2018), Crete, 2018, 2018. [Google Scholar]
  39. U.M. Stephenson : An analytically derived sound particle diffraction model. Acta Acustica united with Acustica 96, 6 (2010) 1051–1068. [Google Scholar]
  40. L. Antani, A. Chandak, M. Taylor, D. Manocha : Efficient finite-edge diffraction using conservative from-region visibility. Applied Acoustics 73, 3 (2012) 218–233. [Google Scholar]
  41. C. Cao, Z. Ren, C. Schissler, D. Manocha, K. Zhou : Interactive sound propagation with bidirectional path tracing. ACM Transactions on Graphics 35, 6 (2016) 180:1–180:11. [Google Scholar]
  42. N. Tsingos, T. Funkhouser, A. Ngan, I. Carlbom : Modeling acoustics in virtual environments using the uniform theory of diffraction, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ‘01, New York, NY, USA. ACM, 2001, pp. 545–552. [Google Scholar]
  43. B.S. Bischoff, M. Botsch, S. Steinberg, S. Bischoff, L. Kobbelt, Rwth Aachen : Openmesh – a generic and efficient polygon mesh data structure, in In openSG symposium, January 2002, Darmstadt, Germany, 2002. [Google Scholar]
  44. V. Pulkki, U. Peter Svensson : Machine-learning-based estimation and rendering of scattering in virtual reality. The Journal of the Acoustical Society of America 145, 4 (2019) 2664–2676. [Google Scholar]
  45. A. Rungta, C. Schissler, N. Rewkowski, R. Mehra, D. Manocha : Diffraction kernels for interactive sound propagation in dynamic environments. IEEE Transactions on Visualization and Computer Graphics 24, 4 (2018) 1613–1622. [Google Scholar]
  46. F. Brinkmann, L. Aspöck, D. Ackermann, R. Opdam, M. Vorländer, S. Weinzierl : A benchmark for room acoustical simulation. Concept and database. Applied Acoustics 176 (2021) 107867. [Google Scholar]
  47. R.G. Kouyoumjian, P.H. Pathak : A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE 62, 11 (1974) 1448–1461. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.