Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 24
Number of page(s) 16
Section General Linear Acoustics
DOI https://doi.org/10.1051/aacus/2021015
Published online 21 May 2021
  1. H. Kobayashi, J.F. Groeneweg: Effects of inflow distortion profiles on fan tone noise. AIAA Journal 18 (1980) 899–906. https://doi.org/10.2514/3.50832. [Google Scholar]
  2. F.J. Krömer, S. Becker: Off-design sound emission of low-pressure axial fans under distorted inflow conditions: An experimental study. Acta Acustica United with Acustica 105 (2019) 95–108. https://doi.org/10.3813/AAA.919291. [Google Scholar]
  3. T.H. Carolus, M. Stremel: Blade surface pressure fluctuations and acoustic radiation from an axial fan rotor due to turbulent inflow. Acta Acustica United with Acustica 88 (2002) 472–482. [Google Scholar]
  4. F. Krömer: Sound emission of low-pressure axial fans under distorted inflow conditions. Doctoral Thesis, FAU Erlangen, 2017. https://doi.org/10.25593/978-3-96147-089-1. [Google Scholar]
  5. T. Biedermann, F. Kameier, C. Paschereit: Optimized test rig for measurements of aerodynamic and aeroacoustic performance of leading edge serrations in low-speed fan application, in Proceedings of ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition GT2018, p. GT2018–75369. 2018. https://doi.org/10.1115/GT2018-75369. [Google Scholar]
  6. F. Krömer, F. Czwielong, S. Becker: Experimental investigation of the sound emission of skewed axial fans with leading-edge serrations. AIAA 57 (2019) 5182–5196. https://doi.org/10.2514/1.J058134. [Google Scholar]
  7. C. Ocker, T.F. Geyer, F. Czwielong, F. Krömer, S. Becker, M. Merkel, W. Pannert: Experimental investigation of the impact of 3d-metal-printed perforated leading edges on airfoil and axial fan noise, in, in AIAA Aviation 2020 Forum, p. 2529. 2020. https://doi.org/10.2514/6.2020-2529. [Google Scholar]
  8. F. Czwielong, F. Krömer, P. Chaitanya, S. Becker: Experimental investigation of the influence of different leading edge modifications on the sound emission of axial fans downstream of a heat exchanger, in Proceedings of the 23rd International Congress on Acoustics. 2019a. [Google Scholar]
  9. F. Czwielong, F. Krömer, S. Becker: Sound emissions of axial fans with leading-edge serrations on different spanwise locations (vienes de 06.02), in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 259, Institute of Noise Control Engineering. 2019b, pp. 4357–4368. [Google Scholar]
  10. F.J. Krömer, A. Renz, S. Becker: Experimental investigation of the sound reduction by leading-edge serrations in axial fans. AIAA Journal 56 (2018) 1–5. https://doi.org/10.2514/1.J056355. [Google Scholar]
  11. T. Biedermann, F. Karmeier, C. Paschereit: Optimised test rig for measurements of aerodynamic and aeroacoustic performance of leading edge serrations in low-speed fan application, in Proceedings of ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition GT2018, GT2018-75369, ASME. 2018. https://doi.org/10.1115/GT2018-75369. [Google Scholar]
  12. S. Lee: Application of microperforated elements in axial fan noise control and silencer design. Purdue University Libraries. Open Access Dissertations, 1308, 2015. https://docs.lib.purdue.edu/open access dissertations/1308; Accessed on 25.04.20. [Google Scholar]
  13. S. Allam, M. Åbom: Noise reduction for automotive radiator cooling fans, in FAN 2015. 2015. [Google Scholar]
  14. S. Allam, M. Åbom: Fan noise control using micro- perforated splitter silencers. Journal of Vibration and Acoustics 136 (2014) 1–8. https://doi.org/10.1115/1.4027245. [Google Scholar]
  15. S. Sacks, M. Åbom: Modal filters for mitigation of in-duct sound. Acoustical Society of America 29 (2016) 1–17. https://doi/org/10.1121/2.0000473. [Google Scholar]
  16. C. Schram, C. Christophe, R. Corin, H. Denayer, W. De Roeck, S. Sacks, M. Åbom: Innovative noise control in ducts, in 23th AIAA/CEAS Aeroacoustic Conference AIAA AVIATION Forum. 2017. https://doi.org/10.2514/6.2017-4038. [Google Scholar]
  17. S. Floss, F. Czwielong, F. Krömer, S. Becker, M. Kaltenbacher: Achieving axial fan sound reduction with micro-perforated absorbers, in Fortschritte der Akustik – DAGA 2019 45. Deutsche Jahrestagung für Akustik, 18.-21. März 2019 in Rostock, DEGA-Akustik. 2019, pp. 1410–1413. [Google Scholar]
  18. F. Czwielong, S. Floss, F. Krömer, S. Becker, M. Kaltenbacher: Optimierte Schallreduktion in Axialventilatorsystemen durch mikroperforierte Absorber, in Fortschritte der Akustik – DAGA 2020 45. Deutsche Jahrestagung für Akustik, 16.-19. März 2020 in Hannover, DEGA-Akustik. 2020, pp. 1105–1108. [Google Scholar]
  19. D.Y. Maa: Potential of micro-perforated panel absorbers. Journal of the Acoustical Society of America 104 (1998) 2861–2866. https://doi.org/10.1121/1.423870. [Google Scholar]
  20. N. Atalla, F. Sgard: Modeling of perforated plates and screens using rigid frame porous media. Journal of Sound and Vibration 303 (2007) 195–208. https://doi.org/10.1016/j.jsv.2007.01.012. [Google Scholar]
  21. S. Floss, M. Kaltenbacher, G. Karlowatz: Application and simulation of micro-perforated panels in hvac systems, in Conference: 10th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference. 2019. https://doi.org/10.4271/2018-01-1514. [Google Scholar]
  22. M. Kaltenbacher, S. Floss: Nonconforming finite elements based on nitsche-type mortaring for inhomogenous wave equation, Journal of Theoretical and Computational Acoustics 26 (2018) 1850028–1–1850028–18. https://doi.org/10.1142/S2591728518500287. [Google Scholar]
  23. M. Kaltenbacher: Fundamental equations of acoustics, in Computational Acoustics, Vol. 579, Springer International Publishing. 2018. https://doi.org/10.1007/978-3-319-59038-7-1. [Google Scholar]
  24. M. Kaltenbacher: Numerical Simulation of Mechatronic Sensors and Actuators – Finite Elements for Computational Multiphysics, 3rd ed. Springer, Berlin, 2015. https://doi.org/10.1007/978-3-642-40170-1. [Google Scholar]
  25. J.F. Allard: Propagation of Sound in Porous Media. Elsevier, London, 2015. https://doi.org/10.1002/9780470747339. [Google Scholar]
  26. L. Jouen, F.X. Bécot: Acoustical characterization of perforated facings. Journal of the Acoustical Society of America 129 (2011) 1400–1406. https://doi.org/10.1121/1.3552887. [Google Scholar]
  27. DIN EN ISO 10534: Acoustics – Determination of sound absorption coeffcient and impedance in impedance tubes – Part 2: Transfer function method. Berlin Beuth Verlag, 2010. [Google Scholar]
  28. J.Y. Chung, D.A. Blaser: Transfer function method of measuring in-duct acoustic properties. II. Experiment. Journal of the Acoustical Society of America 68 (1980) 914–921. https://doi.org/10.1121/1.384779. [Google Scholar]
  29. J. Liu, X. Hua, D. Herrin: Estimation of effective parameters for microperforated panel absorbers and applications. Applied Acoustics 75 (2013) 86–93. https://doi.org/10.3397/1/3761043. [Google Scholar]
  30. M.J. Lighthill: On sound generated aerodynamically 1: General theory. Proceedings of the Royal Society of London. Series A, Mathematical, Physical and Engineering 211 (1952) 564–587. https://doi.org/10.1098/rspa.1952.0060. [Google Scholar]
  31. M. Goldstein: Unified approach to aerodynamic sound generation in the presence of solid boundaries. Acoustical Society of America 56 (1974) 497–509. https://doi.org/10.1121/1.1903283. [Google Scholar]
  32. N. Curle: The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London. Series A, Mathematical, Physical and Engineering 231 (1955) 505–514. https://doi.org/10.1098/rspa.1955.0191. [Google Scholar]
  33. J.E. Ffowcs Williams, D.L. Hawkings: Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 264 (1969) 321–342. https://doi.org/10.1098/rsta.1969.0031. [Google Scholar]
  34. C. Junger: Computational aeroacoustics for the characterization of noise sources in rotating systems. Doctoral Thesis. TU Wien, 2019. [Google Scholar]
  35. VDI 2081 Blatt 1: 2019-03, Air-conditioning – noise generation and noise reduction, VDI 2081. 2001. [Google Scholar]
  36. E. UG: openCFS. 2020. https://www.opencfs.org/index.html. [Online; Accessed 25-December-2020]. [Google Scholar]
  37. M. Ainsworth: Discrete dispersion relation for hp-version finite element approximation at high wave number. IAM Journal of Numerical Analysis 42 (2004) 553–575. https://doi.org/10.1137/S0036142903423460. [Google Scholar]
  38. DIN EN ISO 5801: Fan – Performance testing using standardized airways. Berlin Beuth Verlag, 2017. [Google Scholar]
  39. F. Czwielong, S. Floss, S. Becker, M. Kaltenbacher: Influence of a micro-perforated duct absorber on sound emission and performance of axial fans. Applied Acoustics 174 (2020) 107746. https://doi.org/10.1016/j.apacoust.2020.107746. [Google Scholar]
  40. F. Kameier, W. Neise: Rotating blade flow instability as a source of noise in axial turbomachines. Journal of Sound and Vibration 203 (1997) 833–853. https://doi.org/10.1006/jsvi.1997.0902. [Google Scholar]
  41. M. Becher, R. Krusche, M. Tautz, M. Mauß, N. Springer, F.J. Krömer, S. Becker: Infleunce of the gap flow of axial vehicle cooling fans on radiated narrowband and broadband noise. Acta Acustica United with Acustica 105 (2019) 435–448. https://doi.org/10.3813/AAA.919326. [Google Scholar]
  42. I.H. Abbott, A.E. Von Doenhoff: Theory of wing sections, including a summary of airfoil data. Courier Corporation. 1959. [Google Scholar]
  43. F.J. Zenger, A. Renz, M. Becher, S. Becker: Experimental investigation of the noise emission of axial fans under distorted inflow conditions. Journal of Sound and Vibration 383 (2016) 124–145. https://doi.org/10.1016/j.jsv.2016.07.035. [Google Scholar]
  44. F. Czwielong, F. Krömer, S. Becker: Experimental investigations of the sound emission of axial fans under influence of suction side heat exchangers, in 25th AIAA/CEAS Aeroacoustic Conference, Vol. AIAA 2019-2618, Session: Acoustic/Fluid Dynamic Interactions X. 2019. https://doi.org/10.2514/6.2019-2618. [Google Scholar]
  45. M. Möser, G. Müller: Handbook of Engineering Acoustics. Springer-Verlag Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-540-69460-1. [Google Scholar]
  46. R. Lerch, G.M. Sessler, D. Wolf: Technische Akustik. Springer-Verlag Berlin Heidelberg, 2009. https://doi.org/10.1007/978-3-540-49833-9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.