Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 25
Number of page(s) 17
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2021019
Published online 17 June 2021
  1. J. Blauert: Spatial hearing: The psychophysics of human sound localization. MIT Press, 1997. [Google Scholar]
  2. D.R. Begault, 3-D Sound for Virtual Reality and Multimedia, Academic Press, Cambridge, 1994. [Google Scholar]
  3. E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman: Localization using nonindividualized head-related transfer functions. The Journal of the Acoustical Society of America 94, 1 (1993) 111–123. https://doi.org/10.1121/1.407089. [Google Scholar]
  4. A.W. Bronkhorst: Localization of real and virtual sound sources. The Journal of the Acoustical Society of America 98, 5 (1995) 2542–2553. https://doi.org/10.1121/1.413219. [Google Scholar]
  5. F. Zagala, M. Noisternig, B.F.G. Katz: Comparison of direct and indirect perceptual head-related transfer function selection methods. The Journal of the Acoustical Society of America 147, 5 (2020) 3376–3389. https://doi.org/10.1121/10.0001183. [Google Scholar]
  6. G. Parseihian, B.F.G. Katz: Rapid head-related transfer function adaptation using a virtual auditory environment, The Journal of the Acoustical Society of America 131, 4 (2012) 2948–2957. https://doi.org/10.1121/1.3687448. [Google Scholar]
  7. S. Carlile, K. Balachandar, H. Kelly: Accommodating to new ears: the effects of sensory and sensory-motor feedback. The Journal of the Acoustical Society of America 135, 4 (2014) 2002–2011. https://doi.org/10.1121/1.4868369. [Google Scholar]
  8. S. Xu, Z. Li, G. Salvendy: Individualization of head-related transfer function for three dimensional virtual auditory display: a review. Intl Conf on Virtual Reality, Springer, 2007, pp. 397–407. https://doi.org/10.1007/978-3-540-73335-5_4 [Google Scholar]
  9. B.F.G. Katz: Boundary element method calculation of individual head-related transfer function. II. Impedance effects and comparisons to real measurements. The Journal of the Acoustical Society of America 110, 5 (2001) 2449–2455. https://doi.org/10.1121/1.1412441. [Google Scholar]
  10. R.O. Duda, V.R. Algazi, D.M. Thompson: The use of head-and-torso models for improved spatial sound synthesis. Audio Engineering Society Convention 113 (2002) 1–18. [Google Scholar]
  11. J.C. Middlebrooks, E.A. Macpherson, Z.A. Onsan: Psychophysical customization of directional transfer functions for virtual sound localization. The Journal of the Acoustical Society of America 108, 6 (2000) 3088–3091. https://doi.org/10.1121/1.1322026. [Google Scholar]
  12. A. Silzle: Selection and tuning of HRTFs. Audio Engineering Society Convention 112 (2002) 1–14. [Google Scholar]
  13. D. Schönstein, B.F.G. Katz: HRTF selection for binaural synthesis from a database using morphological parameters. Intl Congress on Acoustics (2010) 1–6. [Google Scholar]
  14. B.U. Seeber, H. Fastl: Subjective selection of non-individual head-related transfer functions. Intl Conf on Auditory Display (2003) 259–262. [Google Scholar]
  15. D. Zotkin, J. Hwang, R. Duraiswaini, L.S. Davis: HRTF personalization using anthropometric measurements, in Workshop on Applications of Sig Proc to Audio and Acoustics, IEEE, 2003, pp. 157–160. https://doi.org/10.1109/ASPAA.2003.1285855. [Google Scholar]
  16. Y. Iwaya: Individualization of head-related transfer functions with tournament-style listening test: Listening with other’s ears. Acoustical Science & Technology 27, 6 (2006) 340–343. https://doi.org/10.1250/ast.27.340. [Google Scholar]
  17. A. Andreopoulou, B.F.G. Katz: Investigation on subjective HRTF rating repeatability. Audio Engineering Society Convention 140 (2016a) 9597, 1–10. [Google Scholar]
  18. D. Poirier-Quinot, B.F.G. Katz: Assessing the impact of head-related transfer function individualization on performance: Case of a virtual reality shooter game. Journal of the Audio Engineering Society 68, 4 (2020). https://doi.org/10.17743/jaes.2020.0004. [Google Scholar]
  19. P. Stitt, L. Picinali, B.F.G. Katz: Auditory accommodation to poorly matched nonindividual spectral localization cues through active learning. Scientific Reports 9, 1 (2019) 1063, 1–14. https://doi.org/10.1038/s41598-018-37873-0. [CrossRef] [Google Scholar]
  20. L. Simon, N. Zacharov, B.F.G. Katz: Perceptual attributes for the comparison of Head- Related Transfer Functions. The Journal of the Acoustical Society of America 140 (2016) 3623–3632. https://doi.org/10.1121/1.4966115. [CrossRef] [PubMed] [Google Scholar]
  21. B.A. Wright, Y. Zhang: A review of learning with normal and altered sound- localization cues in human adults. International Journal of Audiology 45, sup1 (2006) 92–98. https://doi.org/10.1080/14992020600783004. [CrossRef] [Google Scholar]
  22. C. Mendonça: A review on auditory space adaptations to altered head-related cues. Frontiers in Neuroscience 8, 219 (2014) 1–14. https://doi.org/10.3389/fnins.2014.00219. [CrossRef] [PubMed] [Google Scholar]
  23. P.M. Hofman, J.G. Van Riswick, A.J. Van Opstal: Relearning sound localization with new ears. Nature Neuroscience 1, 5 (1998) 417–421. https://doi.org/10.1038/1633. [CrossRef] [PubMed] [Google Scholar]
  24. M.M. Van Wanrooij, A.J. Van Opstal: Relearning sound localization with a new ear. Journal of Neuroscience 25, 22 (2005) 5413–5424. https://doi.org/10.1523/JNEUR0SCI.0850-05.2005. [CrossRef] [Google Scholar]
  25. R. Trapeau, V. Aubrais, M. Schönwiesner: Fast and persistent adaptation to new spectral cues for sound localization suggests a many-to-one mapping mechanism, The Journal of the Acoustical Society of America 140, 2 (2016) 879–890. https://doi.org/10.1121/1.4960568. [CrossRef] [PubMed] [Google Scholar]
  26. P. Zahorik, P. Bangayan, V. Sundareswaran, K. Wang, C. Tam: Perceptual recalibration in human sound localization: Learning to remediate front-back reversals. The Journal of the Acoustical Society of America 120, 1 (2006) 343–359. https://doi.org/10.1121/1.2208429. [CrossRef] [PubMed] [Google Scholar]
  27. M.A. Steadman, C. Kim, J.-H. Lestang, D.F. Goodman, L. Picinali: Short-term effects of sound localization training in virtual reality. Scientific Reports 9, 1 (2019) 1–17. https://doi.org/10.1038/s41598-019-54811-w. [Google Scholar]
  28. P. Majdak, T. Walder, B. Laback: Effect of long-term training on sound localization performance with spectrally warped and band- limited head-related transfer functions. The Journal of the Acoustical Society of America 134, 3 (2013) 2148–2159. https://doi.org/10.1121/1.4816543. [CrossRef] [PubMed] [Google Scholar]
  29. C. Mendonça, G. Campos, P. Dias, J.A. Santos: Learning auditory space: Generalization and long-term effects. PloS One 8, 10 (2013) 1–14. https://doi.org/10.1371/journal.pone.0077900. [Google Scholar]
  30. A. Honda, H. Shibata, J. Gyoba, K. Saitou, Y. Iwaya, Y. Suzuki: Transfer effects on sound localization performances from playing a virtual three-dimensional auditory game. Applied Acoustics 68, 8 (2007) 885–896. https://doi.org/10.1016/j.apacoust.2006.08.007. [CrossRef] [Google Scholar]
  31. J. Hamari, J. Koivisto, H. Sarsa: Does gamification work? A literature review of empirical studies on gamification, in: Intl Conf on System Sciences, IEEE, 2014, pp. 3025–3034. https://doi.org/10.1109/HICSS.2014.377. [Google Scholar]
  32. C. Mendonça, G. Campos, P. Dias, J. Vieira, J.P. Ferreira, J.A. Santos: On the improvement of localization accuracy with nonindividualized HRTF-based sounds. Journal of the Audio Engineering Society 60, 10 (2012) 821–830. [Google Scholar]
  33. T. Bouchara, T.-G. Bara, P.-L. Weiss, A. Guilbert: Influence of vision on short-term sound localization training with non-individualized HRTF. EAA Spatial Audio Signal Processing Symp (2019) 55–60. https://doi.org/10.25836/sasp.2019.04. [Google Scholar]
  34. F. Dramas, B.F.G. Katz, C. Jouffrais: Auditory-guided reaching movements in the peripersonal frontal space. The Journal of the Acoustical Society of America 123, 5 (2008) 3723–3723. https://doi.org/10.1121/1.2935195. [CrossRef] [Google Scholar]
  35. D.P. Kumpik, O. Kacelnik, A.J. King: Adaptive reweighting of auditory localization cues in response to chronic unilateral earplugging in humans. Journal of Neuroscience 30, 14 (2010) 4883–4894. https://doi.org/10.1523/JNEUR0SCI.5488-09.2010. [CrossRef] [Google Scholar]
  36. K. Molloy, D.R. Moore, E. Sohoglu, S. Amitay: Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning. PloS One 7, 5 (2012) 1–13. https://doi.org/10.1371/journal.pone.0036929. [Google Scholar]
  37. P. Majdak, M.J. Goupell, B. Laback: 3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. https://doi.org/10.3758/APP.72.2.454. [CrossRef] [Google Scholar]
  38. S. Carlile, P. Leong, S. Hyams: The nature and distribution of errors in sound localization by human listeners. Hearing Research 114 (1997) 179–196. https://doi.org/10.1016/S0378-5955(97)00161-5. [CrossRef] [PubMed] [Google Scholar]
  39. B. Gourévitch, R. Brette: The impact of early reflections on binaural cues. The Journal of the Acoustical Society of America 132, 1 (2012) 9–27. https://doi.org/10.1121/1.4726052. [CrossRef] [PubMed] [Google Scholar]
  40. N. Kaplanis, S. Bech, S.H. Jensen, T. van Waterschoot: Perception of reverberation in small rooms: a literature study. Audio Eng Soc Conf on Spatial Audio 55 (2014) 1–14. [Google Scholar]
  41. W.M. Hartmann: Localization of sound in rooms. The Journal of the Acoustical Society of America 74, 5 (1983) 1380–1391. https://doi.org/10.1121/1.390163. [CrossRef] [PubMed] [Google Scholar]
  42. B. Rakerd, W. Hartmann: Localization of sound in rooms, II: The effects of a single reflecting surface. The Journal of the Acoustical Society of America 78, 2 (1985) 524–533. https://doi.org/10.1121/1.392474. [CrossRef] [PubMed] [Google Scholar]
  43. R. Guski: Auditory localization: Effects of reflecting surfaces. Perception 19, 6 (1990) 819–830. https://doi.org/10.1068/p190819. [CrossRef] [PubMed] [Google Scholar]
  44. S. Bech: Spatial aspects of reproduced sound in small rooms. The Journal of the Acoustical Society of America 103, 1 (1998) 434–435. https://doi.org/10.1121/1.421098. [CrossRef] [PubMed] [Google Scholar]
  45. D.R. Begault: Perceptual effects of synthetic reverberation on three-dimensional audio systems. Journal of the Audio Engineering Society 40, 11 (1992) 895–904. [Google Scholar]
  46. B.G. Shinn-Cunningham: “Learning reverberation: Considerations for spatial auditory displays. Proc Intl Conf on Auditory Display (2000) 126–134. [Google Scholar]
  47. D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head- related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society 49, 10 (2001) 904–916. [Google Scholar]
  48. D.R. Begault, E.M. Wenzel, A.S. Lee, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Audio Engineering Society Convention 108, 5134 (2000) 1–19. [Google Scholar]
  49. E.J. Angel, R. Algazi, R.O. Duda: On the design of canonical sound localization environments. Audio Engineering Society Convention 113 (2002) 5714, 1–12. [Google Scholar]
  50. A. Nykänen, A. Zedigh, P. Mohlin: Effects on localization performance from moving the sources in binaural reproductions, in Intl Cong and Exposition on Noise, Control Engineering 4 (2013) 3193–3201. [Google Scholar]
  51. B.F.G. Katz, R. Nicol: Binaural spatial reproduction, in Sensory Evaluation of Sound, Zacharov N., Ed., CRC Press, Boca Raton, 2019, pp. 349–388. [Google Scholar]
  52. A. Borrego, J. Latorre, M. Alcañiz, R. Llorens: Comparison of Oculus Rift and HTC Vive: Feasibility for virtual reality-based exploration, navigation, exergaming, and rehabilitation. Games for Health Journal 7, 3 (2018) 151–156. https://doi.org/10.1089/g4h.2017.0114. [CrossRef] [PubMed] [Google Scholar]
  53. A. Becher, J. Angerer, T. Grauschopf: Novel approach to measure motion-to-photon and mouth-to-ear latency in distributed virtual reality systems, in: GIVR/AR Workshop (2018) 1–14, arxiv.org/abs/1809.06320. [Google Scholar]
  54. D. Poirier-Quinot, B.F.G. Katz: The Anaglyph binaural audio engine. Audio Engineering Society Convention 144 (2018) 1–4. [Google Scholar]
  55. D. Brungart, A.J. Kordik, B.D. Simpson: Effects of headtracker latency in virtual audio displays. Journal of the Audio Engineering Society 54 (2006) 32–44. [Google Scholar]
  56. B.N. Postma, B.F.G. Katz: Perceptive and objective evaluation of calibrated room acoustic simulation auralizations. The Journal of the Acoustical Society of America 140, 6 (2016) 4326–4337. https://doi.org/10.1121/1.4971422. [CrossRef] [PubMed] [Google Scholar]
  57. S. Bertet, J. Daniel, E. Parizet, O. Warusfel: Investigation on localisation accuracy for first and higher order ambisonics reproduced sound sources. Acta Acustica 99, 4 (2013) 642–657. https://doi.org/10.3813/AAA.918643. [Google Scholar]
  58. L. Picinali, A. Wallin, Y. Levtov, D. Poirier- Quinot: Comparative perceptual evaluation between different methods for implementing reverberation in a binaural context, in AES Convention 142, Berlin, Germany, 2017, p. 9742, 1–7. https://hal.archives-ouvertes.fr/hal-01790217. [Google Scholar]
  59. I. Engel, C. Henry, S.V. Amengual Gari, P.W. Robinson, L. Picinali: Perceptual implications of different Ambisonics-based methods for binaural reverberation. The Journal of the Acoustical Society of America 149, 2 (2021) 895–910. https://doi.org/10.1121/10.0003437. [CrossRef] [PubMed] [Google Scholar]
  60. I. Engel, C. Henry, S.V.A. Gari, P.W. Robinson, D. Poirier-Quinot, L. Picinali: Perceptual comparison of ambisonics-based reverberation methods in binaural listening, in: EAA Spatial Audio Signal Processing Symposium, Paris, France, 2019, pp. 121–126. https://doi.org/10.25836/sasp.2019.11. [Google Scholar]
  61. M. Noisternig, T. Musil, A. Sontacchi, R. Holdrich: 3D binaural sound reproduction using a virtual Ambisonic approach, Intl Symp on Virtual Env, HCI and Meas Systems, IEEE, 2003, pp. 174–178. https://doi.org/10.1109/VECIMS.2003.1227050 [Google Scholar]
  62. B.F.G. Katz, G. Parseihian: Perceptually based head-related transfer function database optimization, The Journal of the Acoustical Society of America 131, 2 (2012) 99105. https://doi.org/10.1121/1.3672641. [Google Scholar]
  63. A. Andreopoulou, B.F.G. Katz: Subjective HRTF evaluations for obtaining global similarity metrics of assessors and assessees. Journal of Multimodal User Interfaces 10, 3 (2016b) 259–271. https://doi.org/10.1007/s12193-016-0214-y. [CrossRef] [Google Scholar]
  64. O. Warusfel: IRCAM Listen HRTF database, 2003. http://recherche.ircam.fr/equipes/salles/listen, last checked 2018-09-29 [Google Scholar]
  65. R.S. Woodworth, H. Schlosberg: Experimental psychology, Rev ed., Holt, Oxford, England, 1954. [Google Scholar]
  66. H. Bahu, T. Carpentier, M. Noisternig, O. Warusfel: Comparison of different egocentric pointing methods for 3D sound localization experiments. Acta Acustica 102, 1 (2016) 107–118. https://doi.org/10.3813/AAA.918928. [Google Scholar]
  67. M. Morimoto, H. Aokata: Localization cues of sound sources in the upper hemisphere. Journal of the Acoustical Society of Japan 5, 3 (1984) 165–173. https://doi.org/10.1250/ast.5.165. [CrossRef] [Google Scholar]
  68. G. Cumming: The new statistics: Why and how. Psychological Science 25, 1 (2014) 7–29. https://doi.org/10.1177/0956797613504966. [CrossRef] [PubMed] [Google Scholar]
  69. M. Zaunschirm, F. Zotter, M. Frank: Perceptual evaluation of variable-orientation binaural room impulse response rendering. Audio Engineering Society, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.