Open Access
Issue |
Acta Acust.
Volume 5, 2021
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 16 | |
Section | Musical Acoustics | |
DOI | https://doi.org/10.1051/aacus/2021026 | |
Published online | 09 August 2021 |
- J. Backus: Vibrations of the reed and the air column in the clarinet. The Journal of the Acoustical Society of America 33 (1961) 806–809. [CrossRef] [Google Scholar]
- J.-P. Dalmont, B. Gazengel, J. Gilbert, J. Kergomard: Some aspects of tuning and clean intonation in reed instruments. Applied Acoustics 46 (1995) 19–60. [CrossRef] [Google Scholar]
- C. McGinnis, C. Gallagher: The mode of vibration of a clarinet reed. The Journal of the Acoustical Society of America 12 (1941) 529–531. [CrossRef] [Google Scholar]
- T.A. Wilson, G.S. Beavers: Operating modes of the clarinet. The Journal of the Acoustical Society of America 56 (1974) 653–658. [CrossRef] [Google Scholar]
- A.Y. Gokhshtein: Self-vibration of finite amplitude in a tube with a reed, in Soviet Physics Doklady, MAIK Nauka/Interperiodica and Springer Science+Business Media (Russia). 1979, Vol. 24, p. 739. [Google Scholar]
- T. Helie, N. Lopes, R. Causse: Open-loop control of a robotized artificial mouth for brass instruments. The Journal of the Acoustical Society of America 131 (2012) 3470–3470. [CrossRef] [Google Scholar]
- N. Lopes, T. Hélie, R. Caussé: Control of an artificial mouth playing a trombone and analysis of sound descriptors on experimental data, in Proceedings of the Stockholm Music Acoustics Conference 2013, July 30–August 3, 2013, Stockholm, Sweden. https://hal.archives-ouvertes.fr/hal-01245388/document, 2013. [Google Scholar]
- J.-B. Doc, C. Vergez: Oscillation regimes produced by an alto saxophone: Influence of the control parameters and the bore inharmonicity. The Journal of the Acoustical Society of America 137 (2015) 1756–1765. [CrossRef] [Google Scholar]
- J. Gilbert, S. Maugeais, C. Vergez: From the bifurcation diagrams to the ease of playing of reed musical instruments. A theoretical illustration of the bouasse-benade prescription? in Proceedings of the International Symposium on Musical Acoustics, September 13–17, 2019, Detmold, Germany. http://pub.dega-akustik.de/ISMA2019/data/articles/000057.pdf, 2019. [Google Scholar]
- V. Fréour, H. Masuda, S. Usa, E. Tominaga, Y. Tohgi, B. Cochelin, C. Vergez: Numerical analysis and comparison of brass instruments by continuation, in Proceedings of the International Symposium on Musical Acoustics, September 13–17, 2019, Detmold, Germany. http://pub.dega-akustik.de/ISMA2019/data/articles/000015.pdf, 2019. [Google Scholar]
- R. Tournemenne, J.-F. Petiot, B. Talgorn, M. Kokkolaras, J. Gilbert: Brass instruments design using physics-based sound simulation models and surrogate-assisted derivative-free optimization. Journal of Mechanical Design 139 (2017) 041401. [CrossRef] [Google Scholar]
- S.N. Rasband: Chaotic dynamics of nonlinear systems. Courier Dover Publications, 2015. [Google Scholar]
- R. Seydel: Practical bifurcation and stability analysis, Vol. 5. Springer Science & Business Media, 2009. [Google Scholar]
- I.R. Manchester, M.M. Tobenkin, M. Levashov, R. Tedrake: Regions of attraction for hybrid limit cycles of walking robots. IFAC Proceedings Volumes 44 (2011) 5801–5806. [CrossRef] [Google Scholar]
- A. Schwab, M. Wisse: Basin of attraction of the simplest walking model, in Proceedings of the ASME Design Engineering Technical Conference, Vol. 6. 2001, pp. 531–539. [Google Scholar]
- M. Wisse, A.L. Schwab, F.C. van der Helm: Passive dynamic walking model with upper body. Robotica 22 (2004) 681–688. [CrossRef] [Google Scholar]
- M. Wisse, A.L. Schwab, R.Q. van der Linde, F.C. van der Helm: How to keep from falling forward: Elementary swing leg action for passive dynamic walkers. IEEE Transactions on Robotics 21 (2005) 393–401. [CrossRef] [Google Scholar]
- T. Matsumoto: A chaotic attractor from chua’s circuit. IEEE Transactions on Circuits and Systems 31 (1984) 1055–1058. [CrossRef] [Google Scholar]
- G. Pegna, R. Marrocu, R. Tonelli, F. Meloni, G. Santoboni: Experimental definition of the basin of attraction for chua’s circuit. International Journal of Bifurcation and Chaos 10 (2000) 959–970. [CrossRef] [Google Scholar]
- N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L.O. Chua: Scenario of the birth of hidden attractors in the chua circuit. International Journal of Bifurcation and Chaos 27 (2017) 1730038. [CrossRef] [Google Scholar]
- T. Idogawa, T. Kobata, K. Komuro, M. Iwaki: Nonlinear vibrations in the air column of a clarinet artificially blown. The Journal of the Acoustical Society of America 93 (1993) 540–551. [CrossRef] [Google Scholar]
- K. Takahashi, H. Kodama, A. Nakajima, T. Tachibana: Numerical study on multi-stable oscillations of woodwind single-reed instruments. Acta Acustica United with Acustica 95 (2009) 1123–1139. [CrossRef] [Google Scholar]
- S. Terrien, C. Vergez, B. Fabre: Flute-like musical instruments: A toy model investigated through numerical continuation. Journal of Sound and Vibration 332 (2013) 3833–3848. [CrossRef] [Google Scholar]
- S. Brezetskyi, D. Dudkowski, T. Kapitaniak: Rare and hidden attractors in van der pol-duffing oscillators. The European Physical Journal Special Topics 224 (2015) 1459–1467. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Wang, W. Lu, T. Chen: Multistability and new attraction basins of almost-periodic solutions of delayed neural networks. IEEE Transactions on Neural Networks 20 (2009) 1581–1593. [Google Scholar]
- W.L. Coyle, P. Guillemain, J. Kergomard, J.-P. Dalmont: Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas. The Journal of the Acoustical Society of America 138 (2015) 2770–2781. [Google Scholar]
- E. Petersen, P. Guillemain, J. Kergomard, T. Colinot: The effect of the cutoff frequency on the sound production of a clarinet-like instrument. The Journal of the Acoustical Society of America 145 (2019) 3784–3794. [Google Scholar]
- A. Guilloteau, P. Guillemain, J. Kergomard, M. Jousserand: The effect of the size of the opening on the acoustic power radiated by a reed woodwind instrument. Journal of Sound and Vibration 343 (2015) 166–175. [Google Scholar]
- T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.-B. Doc, B. Cochelin: Influence of the “ghost reed” simplification of the bifurcation diagram of a saxophone model. Acta Acustica United with Acustica 105 (2019) 1291–1294. [Google Scholar]
- A. Hirschberg, J. Kergomard, G. Weinreich: Mechanics of musical instruments, Chapter 6 (J. Kergomard): Elementary considerations on reed-instrument oscillations. CISM Courses and Lectures 355 (1995) 229–290. [Google Scholar]
- A. Muñoz Arancón, B. Gazengel, J.-P. Dalmont, E. Conan: Estimation of saxophone reed parameters during playing. The Journal of the Acoustical Society of America 139 (2016) 2754–2765. [Google Scholar]
- V. Chatziioannou, M. van Walstijn: Estimation of clarinet reed parameters by inverse modelling. Acta Acustica United with Acustica 98 (2012) 629–639. [Google Scholar]
- S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments. Acta Acustica United with Acustica 101 (2015) 155–173. [Google Scholar]
- J. Backus: Small-vibration theory of the clarinet. The Journal of the Acoustical Society of America 35 (1963) 305–313. [Google Scholar]
- A. Hirschberg, R. Van de Laar, J. Marrou-Maurieres, A. Wijnands, H. Dane, S. Kruijswijk, A. Houtsma: A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments. Acta Acustica United with Acustica 70 (1990) 146–154. [Google Scholar]
- J.-P. Dalmont, J. Gilbert, S. Ollivier: Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements. The Journal of the Acoustical Society of America 114 (2003) 2253–2262. [Google Scholar]
- J.-P. Dalmont, J.C. Le Roux: A new impedance sensor for wind instruments. The Journal of the Acoustical Society of America 123 (2008) 3014. [Google Scholar]
- A. Chaigne, J. Kergomard: Acoustique des instruments de musique (Acoustics of musical instruments). Belin, 2008. [Google Scholar]
- J. Kergomard, P. Guillemain, F. Silva, S. Karkar: Idealized digital models for conical reed instruments, with focus on the internal pressure waveform. The Journal of the Acoustical Society of America 139 (2016) 927–937. [Google Scholar]
- F. Silva, C. Vergez, P. Guillemain, J. Kergomard, V. Debut: Moreesc: A framework for the simulation and analysis of sound production in reed and brass instruments. Acta Acustica United with Acustica 100 (2014) 126–138. [Google Scholar]
- P. Guillemain, J. Kergomard, T. Voinier: Real-time synthesis of clarinet-like instruments using digital impedance models. The Journal of the Acoustical Society of America 118 (2005) 483–494. [Google Scholar]
- T. Colinot: Numerical simulation of woodwind dynamics: Investigating nonlinear sound production behavior in saxophone-like instruments. PhD thesis, Aix-Marseille Université, 2020. [Google Scholar]
- J.-B. Doc, C. Vergez, S. Missoum: A minimal model of a single-reed instrument producing quasi-periodic sounds. Acta Acustica United with Acustica 100 (2014) 543–554. [Google Scholar]
- J. Gilbert, J. Kergomard, E. Ngoya: Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique. The Journal of the Acoustical Society of America 86 (1989) 35–41. [Google Scholar]
- N.M. Krylov, N.N. Bogoliubov: Introduction to non-linear mechanics. Princeton University Press, 1949. [Google Scholar]
- M. Nakhla, J. Vlach: A piecewise harmonic balance technique for determination of periodic response of nonlinear systems. IEEE Transactions on Circuits and Systems 23 (1976) 85–91. [Google Scholar]
- B. Cochelin, C. Vergez: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal of Sound and Vibration 324 (2009) 243–262. [Google Scholar]
- L. Guillot, B. Cochelin, C. Vergez: A Taylor series-based continuation method for solutions of dynamical systems. Nonlinear Dynamics 98 (2019) 2827–2845. [Google Scholar]
- B. Bentvelsen, A. Lazarus: Modal and stability analysis of structures in periodic elastic states: Application to the Ziegler column. Nonlinear Dynamics 91 (2018) 1349–1370. [Google Scholar]
- L. Guillot, A. Lazarus, O. Thomas, C. Vergez, B. Cochelin: A purely frequency based floquet-hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems. Journal of Computational Physics 416 (2020) 109477. [Google Scholar]
- A. Lazarus, O. Thomas: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Mécanique 338 (2010) 510–517. [Google Scholar]
- T. Colinot, P. Guillemain, C. Vergez, J.-B. Doc, P. Sanchez: Multiple two-step oscillation regimes produced by the alto saxophone. The Journal of the Acoustical Society of America 147 (2020) 2406–2413. [Google Scholar]
- W. Beyn, A. Champneys, E. Doedel, W. Govarets, U. Kuznetsov, A. Yu, B. Sandstede: Handbook of Dynamical Systems (Vol 2), Chapter Numerical Continuation, and Computation of Normal Forms. Elsevier, 2002. [Google Scholar]
- Y.A. Kuznetsov: Elements of applied bifurcation theory, Vol. 112. Springer Science & Business Media, 2013. [Google Scholar]
- B. Bergeot, A. Almeida, C. Vergez, B. Gazengel: Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure. Nonlinear Dynamics 73 (2013) 521–534. [Google Scholar]
- F. Silva: Émergence des auto-oscillations dans un instrument de musique à anche simple. PhD thesis, Aix-Marseille Université, 2009. [Google Scholar]
- P. Guillemain, C. Vergez, D. Ferrand, A. Farcy: An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays. Acta Acustica United with Acustica 96 (2010) 622–634. [Google Scholar]
- A.H. Benade: Fundamentals of musical acoustics. Courier Corporation, 1990. [Google Scholar]
- A.H. Benade, D. Gans: Sound production in wind instruments. Annals of the New York Academy of Sciences 155 (1968) 247–263. [Google Scholar]
- H. Bouasse: Instruments à vent. Impr. Delagrave, 1929. [Google Scholar]
- D.M. Campbell, J. Gilbert, A. Myers: The Science of Brass Instruments. Springer, 2020. [Google Scholar]
- J.-M. Chen, J. Smith, J. Wolfe: Saxophone acoustics: Introducing a compendium of impedance and sound spectra. Acoustics Australia 37 (2009) 18–23. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.