Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 43
Number of page(s) 16
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2021035
Published online 14 October 2021
  1. M.C. Liberman, S. Puria, J.J. Guinan Jr: The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2 f 1 − f 2 distortion product otoacoustic emission. Journal of the Acoustical Society of America 99, 6 (1996) 3572–3584. [Google Scholar]
  2. I. Yasin, V. Drga, C.J. Plack, Effect of human auditory efferent feedback on cochlear gain and compression, Journal of Neuroscience 34, 46 (2014) 15319–15326. [Google Scholar]
  3. J.L. Verhey, M. Kordus, V. Drga, I. Yasin, Effect of efferent activation on binaural frequency selectivity, Hearing Research 350 (2017) 152–159. [PubMed] [Google Scholar]
  4. S.P. Bacon: Compression: from cochlea to cochlear implants, in Overview of Auditory Compression, Bacon S.P., Fay R.R., Popper A.N., Editors. Vol. 17 Springer Handbook of Auditory Research, Springer, New York, 2004, 1–17 [Google Scholar]
  5. J.F. Ashmore: A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. Journal of Physiology 388, 1 (1987) 323–347. [Google Scholar]
  6. G.L. Rasmussen, Efferent fibers of the cochlear nerve and cochlear nucleus, in Neural mechanisms of the auditory and vestibular systems. G.L. Rasmussen, W.F. Windle, Editor. Vol. 8, Springfield (Ill.), 1960, pp. 105–115. [Google Scholar]
  7. W.B. Warr: Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. Journal of Comparative Neurology 161, 2 (1975) 159–181. [Google Scholar]
  8. I.J. Russell, E. Murugasu: Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. Journal of the Acoustical Society of America 103, 3 (1997) 1734–1738. [Google Scholar]
  9. W.B. Warr, J.J. Guinan Jr: Efferent innervation of the organ of Corti: two separate systems. Brain Research 173, 1 (1979) 152–155. [PubMed] [Google Scholar]
  10. U.A. Kumar, C.S. Vanaja: Functioning of olivocochlear bundle and speech perception in noise. Ear and Hearing 25, 2 (2004) 142–146. [PubMed] [Google Scholar]
  11. S.K. Mishra, M.E. Lutman: Top-down influences of the medial olivocochlear efferent system in speech perception in noise. PLoS One 9, 1 (2014) e85756. [PubMed] [Google Scholar]
  12. I.B. Mertes, K.M. Johnson, Z.A. Dinger: Olivocochlear efferent contributions to speech-in-noise recognition across signal-to-noise ratios. Journal of the Acoustical Society of America 145, 3 (2019) 1529–1540. [Google Scholar]
  13. A. Strickland: The temporal effect with notched-noise maskers: analysis in terms of input–output functions. Journal of the Acoustical Society of America 115 (2004) 2234–2245. [Google Scholar]
  14. E.A. Strickland: The relationship between precursor level and the temporal effect. Journal of the Acoustical Society of America 123 (2008) 946–954. [Google Scholar]
  15. D.O. Kim, P.A. Dorn, S.T. Neely, M.P. Gorga: Adaptation of distortion product otoacoustic emission in humans. Journal of the Association for Research in Otolaryngology 2, 1 (2001) 31–40. [Google Scholar]
  16. B.C. Backus, J.J. Guinan: Time-course of the human medial olivocochlear reflex. Journal of the Acoustical Society of America 119, 5 (2006) 2889–2904. [Google Scholar]
  17. J.J. Guinan, M.L. Gifford: Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hearing Research 37, 1 (1988) 29–45. [PubMed] [Google Scholar]
  18. D.M. McFadden: Masking-level differences with continuous and with burst masking noise. Journal of the Acoustical Society of America 40 (1966) 1414–1419. [Google Scholar]
  19. W.A. Yost: Prior stimulation and the masking-level difference. Journal of the Acoustical Society of America 78 (1985) 901–907. [Google Scholar]
  20. R.H. Gilkey, B.D. Simpson, J.M. Weisenberger: Noise fringe and binaural detection. Journal of the Acoustical Society of America 88 (1990) 1323–1332. [Google Scholar]
  21. I. Yasin, G.B. Henning: The effects of noise-bandwidth, noise-fringe duration, and temporal signal location on the binaural masking-level difference. Journal of the Acoustical Society of America 132 (2012) 327–338. [Google Scholar]
  22. B. Kollmeier, R.H. Gilkey: Binaural forward and backward masking: Evidence for sluggishness in binaural detection. Journal of the Acoustical Society of America 87 (1990) 1709–1719. [Google Scholar]
  23. M. van der Heijden, C. Trahiotis: Binaural detection as a function of interaural correlation and bandwidth of masking noise: Implications for estimates of spectral resolution. Journal of the Acoustical Society of America 103, 3 (1998) 1609–1614. [Google Scholar]
  24. L.R. Bernstein, C. Trahiotis, R.L. Freyman: Binaural detection of 500-Hz tones in broadband and in narrowband masking noise: Effects of signal/noise duration and forward masking fringes. Journal of the Acoustical Society of America 119 (2006) 2981–2993. [Google Scholar]
  25. V.M. Richards, D.E. Shub, E.M. Carreira: The role of masker fringes for the detection of coherent tone pips. Journal of the Acoustical Society of America 130 (2011) 883–892. [Google Scholar]
  26. P.M. Zurek, N.I. Durlach: Noise-bandwidth dependence in homophasic and antiphasic tone detection. Journal of the Acoustical Society of America 81 (1987) 459–464. [Google Scholar]
  27. S. van de Par, A. Kohlrausch: Dependence of binaural masking level differences on center frequency, noise bandwidth, and interaural parameters. Journal of the Acoustical Society of America 106 (1999) 1940–1947. [Google Scholar]
  28. M.E. Evilsizer, R.H. Gilkey, C.R. Mason, H.S. Colburn, L.H. Carney: Binaural detection with narrowband and wideband reproducible noise maskers: I. Results for humans. Journal of the Acoustical Society of America 111 (2002) 336–345. [Google Scholar]
  29. J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. Journal of the Acoustical Society of America 110 (2001) 1089–1104. [Google Scholar]
  30. L.H. Carney: Binaural cues for detection of signals in noise: Experiments and models, in Proceedings of the International Symposium on Auditory and Audiological Research, Vol. 2, 2009, pp. 71–82. [Google Scholar]
  31. S.G. Jennings, E.A. Strickland: Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. Journal of the Acoustical Society of America 132, 4 (2012) 2483–2496. [Google Scholar]
  32. H. Fletcher: Auditory patterns. Review of Modern Physics 12, 1 (1940) 47–65. [Google Scholar]
  33. E. de Boer, C.E. Bos: On the concept of the critical band, in 4th International Congress on Acoustics, Copenhagen, Denmark H13, 1962, pp. 1–4. [Google Scholar]
  34. R.D. Patterson: Auditory filter shapes derived with noise stimuli. Journal of the Acoustical Society of America 59, 3 (1976) 640–654. [Google Scholar]
  35. R.D. Patterson, I. Nimmo-Smith: Off-frequency listening and auditory-filter asymmetry. Journal of the Acoustical Society of America 6, 1 (1980) 229–245. [Google Scholar]
  36. J.L. Verhey, S. van de Par: Binaural frequency selectivity in humans. Eurorpeen Journal of Neuroscience 51, 5 (2018) 1179–1190. [Google Scholar]
  37. M.F. Yama, D.E. Robinson: Comparison of frequency selectivity for the monaural and binaural hearing systems: Evidence from a probe-frequency procedure. Journal of the Acoustical Society of America 71 (1982) 694–700. [Google Scholar]
  38. M. Nitschmann, J.L. Verhey, B. Kollmeier: Monaural and binaural frequency selectivity in hearing-impaired subjects. International Journal of Audiology 49, 5 (2010) 357–367. [PubMed] [Google Scholar]
  39. J.W. Hall, R.S. Tyler, M.A. Fernandes: Monaural and binaural auditory frequency resolution measured using bandlimited noise and notched-noise masking. Journal of the Acoustical Society of America 73, 3 (1983) 894–898. [Google Scholar]
  40. M. Nitschmann, J.L. Verhey: Binaural notched-noise masking and auditory-filter shape. Journal of the Acoustical Society of America 133, 4 (2013) 2262–2271. [Google Scholar]
  41. D.E. Robinson, C. Trahiotis: Effects of signal duration and masker duration on detectability under diotic and dichotic listening conditions. Attention, Perception and Psychophysics 12, 4 (1972) 333–334. [Google Scholar]
  42. M. Nitschmann, J.L. Verhey, B. Kollmeier: The role of across-frequency processes in dichotic listening conditions. Journal of the Acoustical Society of America 126, 6 (2009) 3188–3198. [Google Scholar]
  43. A. Kohlrausch, R. Fassel: Binaural masking level differences in nonsimultaneous masking, in Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum Associates, Mahwah, NJ, 1997, pp. 169–190. [Google Scholar]
  44. U.T. Zwicker, E. Zwicker: Binaural masking-level difference as a function of masker and test-signal duration. Hearing Research 13, 3 (1984) 215–219. [PubMed] [Google Scholar]
  45. B.C.J. Moore, B.R. Glasberg: Auditory filter shapes derived in simultaneous and forward masking. Journal of the Acoustical Society of America 70, 4 (1981) 1003–1014. [Google Scholar]
  46. M. Unoki, R. Miyauchi, C.-T. Tan: Estimates of tuning of auditory filter using simultaneous and forward notched-noise masking, in Hearing -From Sensory Processing to Perception, B. Kollmeier, V. Hohmann, G.M. Klump, U. Langemann, M. Mauermann, S. Uppenkamp, J.L. Verhey, Editors, Vol. 119, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 19–26. [Google Scholar]
  47. B.C.J. Moore: Psychophysical tuning curves measured in simultaneous and forward masking. Journal of the Acoustical Society of America 63, 2 (1978) 524–532. [Google Scholar]
  48. A.J. Oxenham, C.A. Shera: Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association for Research in Otolaryngology 4, 4 (2003) 541–554. [Google Scholar]
  49. W.A. Yost, J. Walton: Hierarchy of masking-level differences optained for temporal masking. Journal of the Acoustical Society of America 61 (1977) 1376–1379. [Google Scholar]
  50. M.F. Yama: Binaural analysis in forward masking: Effects of signal frequency. Journal of the Acoustical Society of America 78 (1985) 2142–2145. [Google Scholar]
  51. X. Zhou, S. Henin, S.E. Thompson, G.R. Long, L.C. Parra: Sensation to masked tones following notched-noise correlates with estimates of cochlear function using distortion product otoacoustic emissions. Journal of the Acoustical Society of America 127 (2010) 970–976. [Google Scholar]
  52. R.P. Carlyon: Changes in the masked thresholds of brief tones produced by preceding bursts of bandpass and notched noise. Journal of the Acoustical Society of America 83, S1 (1988) 34–34. [Google Scholar]
  53. M.L. Hicks, S.P. Bacon: Factors influencing temporal effects with notched-noise maskers. Hearing Research 64, 1 (1992) 123–132. [PubMed] [Google Scholar]
  54. N.F. Viemeister, S.P. Bacon: Forward masking by enhanced components in harmonic complexes. Journal of the Acoustical Society of America 71 (1982) 1502–1507. [Google Scholar]
  55. J.A. Beim, E. Maxwell, A.J. Oxenham, M. Wojtczak: Stimulus frequency otoacoustic emissions provide no evidence for the role of efferents in the enhancement effect. Journal of the Association for Research in Otolaryngology 16, 5 (2015) 613–629. [Google Scholar]
  56. L. Feng, A.J. Oxenham: Auditory enhancement and the role of spectral resolution in normal-hearing listeners and cochlear-implant users. Journal of the Acoustical Society of America 144 (2018) 552–566. [Google Scholar]
  57. S.G. Jennings, E.A. Strickland, M.G. Heinz: Precursor effects on behavioral estimates of frequency selectivity and gain in forward masking. Journal of the Acoustical Society of America 125 (2009) 2172–2181. [Google Scholar]
  58. H.A. Kreft, M. Wojtczak, A.J. Oxenham: Auditory enhancement under simultaneous masking in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 143 (2018) 901–910. [Google Scholar]
  59. N.F. Viemeister, S.P. Bacon: Forward masking by enhanced components in harmonic complexes. Journal of the Acoustical Society of America 71 (1982) 1502–1507. [Google Scholar]
  60. A.J. Byrne, M.A. Stellmack, N.F. Viemeister: The enhancement effect: evidence for adaptation of inhibition using a binaural centering task. Journal of the Acoustical Society of America 129 (2011) 2088–2094. [Google Scholar]
  61. A. Almishaal, G.M. Bidelman, S.G. Jennings: Notched-noise precursors improve detection of low-frequency amplitude modulation”. Journal of the Acoustical Society of America 141 (2017) 324–333. [Google Scholar]
  62. M.I. Marrufo-Pérez, A. Eustaquio-Martín, E.A. Lopez-Poveda: Adaptation to noise in human speech recognition unrelated to the medial olivocochlear reflex. Journal of Neuroscience 38 (2018) 4138–4145. [Google Scholar]
  63. M. Wojtczak, A.M. Kiamg, N.T. Torunsky: Exploring the role of medial olivococlear efferents on the detection of amplitude modulation for tones presented in noise. Journal of the Association for Research in Otolaryngology 20 (2019) 395–413. [Google Scholar]
  64. S. Carcagno, C. Semal, L. Demany: No need for templates in the auditory enhancement effect. PLoS One 8, 6 (2013). [Google Scholar]
  65. W. Lilaonitkul, J.J. Guinan Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. Journal of Neurophysiology 107, 6 (2012) 1598–1611. [PubMed] [Google Scholar]
  66. K.N. Darrow, S.F. Maison, M.C. Liberman: Cochlear efferent feedback balances interaural sensitivity. Nature Neuroscience 9, 12 (2006) 1474–1476. [PubMed] [Google Scholar]
  67. V. Drga, C.J. Plack, I. Yasin: Frequency tuning of the efferent effect on cochlear gain in humans. Advances in Experimental Medicine and Biology 894 (2016) 477–484. [PubMed] [Google Scholar]
  68. B.C.J. Moore, B.R. Glasberg: Modeling binaural loudness. Journal of the Acoustical Society of America 121, 3 (2007) 1604–1612. [Google Scholar]
  69. B.C.J. Moore, B.R. Glasberg, A. Varathanathan, J. Schlittenlacher: A loudness model for time-varying sounds incorporating binaural inhibition. Trends in Hearing 20 (2016) 2331216516682698. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.