Open Access
Acta Acust.
Volume 5, 2021
Article Number 44
Number of page(s) 16
Section Computational and Numerical Acoustics
Published online 20 October 2021
  1. T.J. Mueller: Aeroacoustic measurements, Springer-Verlag, 2002; Beamforming in Acoustic Testing, 62–97. [Google Scholar]
  2. R.P. Dougherty: Functional Beamforming, in: 5th Berlin Beamforming Conference, 2014, BeBeC-2014-01. [Google Scholar]
  3. R.P. Dougherty: Functional beamforming for aeroacoustic source distributions, in: 20th AIAA/CEAS Aeroacoustics Conference, AIAA 2014-3066, 2014. [Google Scholar]
  4. T.F. Brooks, W.M. Humphreys: A deconvolution approach for the mapping of acoustic sources (damas) determined from phased microphone arrays. Journal of Sound and Vibration 294 (2006) 856–879. [CrossRef] [Google Scholar]
  5. P. Sijtsma: CLEAN based on spatial source coherence. International Journal of Aeroacoustics 6, 4 (2007) 357–374. [CrossRef] [Google Scholar]
  6. T. Suzuki: L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources. Journal of Sound and Vibration 330 (2011) 5835–5851. [CrossRef] [Google Scholar]
  7. T. Yardibi, J. Li, P. Stoica, L.N. Cattafesta: Sparsity constrained deconvolution approaches for acoustic source mapping. Journal of the Acoustical Society of America 123 (2008) 2631–2642. [CrossRef] [PubMed] [Google Scholar]
  8. Q. Leclere, A. Pereira, C. Bailly, J. Antoni, C. Picard: A unified formalism for acoustic imaging based on microphone array measurements: International Journal of Aeroacoustics 164–5 (2017) 431–456. [CrossRef] [Google Scholar]
  9. G. Herold, E. Sarradj: Performance analysis of microphone array methods. Journal of Sound and Vibration 401 (2017) 152–168. [CrossRef] [Google Scholar]
  10. K. Ehrenfried, L. Koop: Comparison of iterative deconvolution algorithms for the mapping of acoustic sources. AIAA Journal 45, 7 (2007) 1584–1595. [CrossRef] [Google Scholar]
  11. Z. Chu, Y. Yang: Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging function beamforming. Mechanical System and Signal Pocessing 48 (2014) 404–422. [CrossRef] [Google Scholar]
  12. T. Yardibi, N.S. Zawodny, C. Bahr, F. Liu, L.N. Cattafesta, J. Li: Comparison of microphone array processing techniques for aeroacoustic measurements. International Journal of Aeroacoustics 9, 6 (2010) 733–761. [CrossRef] [Google Scholar]
  13. R. Merino-Martínez, P. Sijtsma, M. Snellen, T. Ahlefeldt, J. Antoni, C.J. Bahr, D. Blacodon, D. Ernst, A. Finez, S. Funke, T.F. Geyer, S. Haxter, G. Herold, X. Huang, W.M. Humphreys, Q. Leclère, A. Malgoezar, U. Michel, T. Padois, A. Pereira, C. Picard, E. Sarradj, H. Siller, D.G. Simons, C Spehr: A review of acoustic imaging methods using phased microphone arrays. CEAS Aeronautical Journal 10 (2019) 197–230. [CrossRef] [Google Scholar]
  14. P. Chiariotti, M. Martarelli, P. Castellini: Acoustic beamforming for noise source localization: Reviews, methodology and applications. Mechanical Systems and Signal Processing 120 (2019) 422–448. [CrossRef] [Google Scholar]
  15. E. Sarradj: Three-dimensional acoustic sourcemapping with different beamforming steering vector formulations. Advances in Acoustics and Vibration 2012 (2012) 292695. [CrossRef] [Google Scholar]
  16. J. Fischer, C. Doolan: Beamforming in a reverberant environment using numerical and experimental steering vector formulations. Mechanical Systems and Signal Processing 91 (2017) 10–22. [CrossRef] [Google Scholar]
  17. E. Sarradj: Quantitative source spectra from acoustic array measurements, in: 2nd Berlin Beamforming Conference, 2008, BeBeC-2008-03. [Google Scholar]
  18. E. Sarradj, T. Geyer, H. Brick, K.-R. Kirchner, T. Kohrs: Application of beamforming and deconvolution techniques to aeroacoustic sources at highspeed trains, in: NOVEM – Noise and Vibration: Emerging Methods, Sorrento, 2012. [Google Scholar]
  19. R. Merino-Martínez, P. Sijtsma, A.R. Carpio, R. Zamponi, S. Luesutthiviboon, A.M.N. Malgoezar, M. Snellen, C. Schram, D.G. Simons: Integration methods for distributed sound sources. International Journal of Aeroacoustics 18, 4–5 (2019) 444–469. [CrossRef] [Google Scholar]
  20. M. Kaltenbacher, B. Kaltenbacher, S. Gombots: Inverse scheme for acoustic source localization using microphone measurements and finite element simulations. Acta Acustica united with Acustica 104 (2018) 647–656. [CrossRef] [Google Scholar]
  21. E. Deckers, S. Jonckheere, D. Vandepitte, W. Desmet: Modelling techniques for vibro-acoustic dynamics of poroelastic materials. Archives of Computational Methods in Engineering 22, 2 (2015) 183–236. [CrossRef] [Google Scholar]
  22. S.W. Anzengruber, B. Hofmann, P. Mathé: Regularization properties of the sequential discrepancy principle for Tikhonov regularization in Banach spaces. Applicable Analysis 93, 7 (2014) 1382–1400. [CrossRef] [Google Scholar]
  23. M. Kaltenbacher: Numerical simulation of mechatronic sensors and actuators: Finite elements for computational multiphysics, 3rd ed. Springer, 2015. [Google Scholar]
  24. I.M. Sobol’: Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments 1 (1993) 407–414. [Google Scholar]
  25. S. Gombots: Acoustic source localization at low frequencies using microphone arrays. PhD Thesis, TU Wien, 2020. [Google Scholar]
  26. J. Nossent, P. Elsen, W. Bauwens: Sobol sensitivity analysis of a complex environmental model. Environmental Modelling & Software 26, 12 (2011) 1515–1525. [CrossRef] [Google Scholar]
  27. B. Iooss, P. Lemaître: A review on global sensitivity analysis methods, in: Uncertainty management in simulation-optimization of complex systems: Algorithms and applications, C. Meloni, G. Dellino, Editors. Springer, 2015. [Google Scholar]
  28. T. Homma, A. Saltelli: Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety 52, 1 (1996) 1–17. [CrossRef] [Google Scholar]
  29. F. Pianosi, F. Sarrazin, T. Wagener: A Matlab toolbox for global sensitivity analysis. Environmental Modelling & Software 70 (2015) 80–85. [CrossRef] [Google Scholar]
  30. S. Tarantola, W. Becker: SIMLAB software for uncertainty and sensitivity analysis, in: Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, H. Owhadi, Editors. Cham, Springer International Publishing, 2017, pp. 1695–1731. [Google Scholar]
  31. C. Tong: Problem solving environment for uncertainty analysis and design exploration, in: Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, H. Owhadi, Editors. Cham, Springer International Publishing, 2017, pp. 1695–1731. [CrossRef] [Google Scholar]
  32. Y. Gan, Q. Duan, W. Gong, C. Tong, Y. Sun, W. Chu, A. Ye, C. Miao, Z. Di: A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environmental Modelling & Software 51 (2014) 269–285. [CrossRef] [Google Scholar]
  33. T. Ziehn, A. Tomlin: GUI-HDMR – A software tool for global sensitivity analysis of complex models. Environmental Modelling & Software 24 (2009) 775–785. [CrossRef] [Google Scholar]
  34. J. Herman, W. Usher, SA Lib: An open-source python library for sensitivity analysis. The Journal of Open Source Software 2, 9 (2017) 97. [CrossRef] [Google Scholar]
  35. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto: Sensitivity analysis in practice: a guide to assessing scientific models, 2nd ed. Wiley Online Library, 2017. [Google Scholar]
  36. X.-Y. Zhang, M. Trame, L. Lesko, S. Schmidt: Sobol sensitivity analysis: A tool to DE the development and evaluation of systems pharmacology model. CPT: Pharmacometrics & Systems, Pharmacology 4, 2 (2015) 69–79. [Google Scholar]
  37. A. Saltelli: Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications 145 (2002) 280–297. [NASA ADS] [CrossRef] [Google Scholar]
  38. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola: Global sensitivity analysis. The Primer. John Wiley & Sons, 2008. [Google Scholar]
  39. B. Efron, R. Tibshirani: An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993. [Google Scholar]
  40. R.W. Johnson: An Introduction to the Bootstrap. Teaching Statistics 23, 2 (2001) 49–54. [CrossRef] [Google Scholar]
  41. ISO 10534–2: Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method, 2001. [Google Scholar]
  42. M.E. Delany, E.N. Bazley: Acoustical properties of fibrous absorbent materials. Applied Acoustics 3, 2 (1970) 105–116. [Google Scholar]
  43. M.E. Delany, E.N. Bazley: Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan 11, 1 (1990) 19–24. [Google Scholar]
  44. ISO 9053–1: Acoustics – Determination of airflow resistance – Part 1: Static airflow method, 2019. [Google Scholar]
  45. J.F. Allard, N. Atalla: Propagation of sound in porous media: modelling sound absorbing materials. 1st ed. John Wiley & Sons, 2009. [CrossRef] [Google Scholar]
  46. K. Levenberg: A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2, 2 (1944) 164–168. [CrossRef] [Google Scholar]
  47. D.W. Marquardt: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 2 (1963) 431–441. [CrossRef] [Google Scholar]
  48. B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins: Global positioning system: theory and practice. Springer Science & Business Media, 2012. [Google Scholar]
  49. J. Chen, J. Benesty, Y. Huang: Time delay estimation in room acoustic environments: an overview. EURASIP Journal on Advances in Signal Processing 2006, 026503 (2006) 1–19. [Google Scholar]
  50. D.A. Bohn: Environmental effects on the speed of sound. Journal of the Audio Engineering Society 36, 4 (1988) 223–231. [Google Scholar]
  51. C. Antoine: Thermodynamique – Tensions des vapeurs. Nouvelle relation entre les tensions et les températures. Comptes Rendus des Séances de l’Académie des Sciences 107 (1888) 681–684. [Google Scholar]
  52. M.S. Brandstein, H.F. Silverman: A robust method for speech signal time-delay estimation in reverberant rooms. IEEE International Conference on Acoustics, Speech, and Signal Processing 1 (1997) 375–378. [Google Scholar]
  53. L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, C. Maple: A survey of localization in wireless sensor network. International Journal of Distributed Sensor Networks (2012). [Google Scholar]
  54. J.M. Fresno, G. Robles, J. Martínez-Tarifa, B.G. Stewart: Survey on the Performance of Source Localization Algorithms. Sensors (Basel, Switzerland) 17, 11 (2017) 2666. [CrossRef] [Google Scholar]
  55. M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, B. Lee: A survey of sound source localization methods in wireless acoustic sensor networks. Wireless Communications and Mobile Computing 2017 (2017) 1–24. [Google Scholar]
  56. R.E. Kalman: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 1 (1960) 35–45. [CrossRef] [Google Scholar]
  57. D. Simon: Optimal State Estimation. Wiley-Interscience, 2006. [CrossRef] [Google Scholar]
  58. T.F. Brooks, W.M. Humphreys: Effect of directional array size on the measurement of airframe noise components, in: 5th AIAA/CEAS Aeroacoustics Conference and Exhibit. AIAA, 1999. [Google Scholar]
  59. P. Sijtsma: Phased array beamforming applied to wind tunnel and fly-over tests, in: SAE Brasil International Noise and Vibration Congress, October 2010. [Google Scholar]
  60. R. Merino-Martínez, E. Neri, M. Snellen, J. Kennedy, D. Simons, G.J. Bennett: Comparing flyover noise measurements to full-scale nose landing gear wind tunnel experiments for regional aircraft, in: 23rd AIAA/CEAS Aeroacoustics Conference. AIAA 2017-3006, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.