Open Access
Short Communication
Issue
Acta Acust.
Volume 5, 2021
Article Number 35
Number of page(s) 6
Section Aeroacoustics
DOI https://doi.org/10.1051/aacus/2021020
Published online 10 August 2021
  1. F. Czwielong, F. Krömer, S. Becker: Experimental investigations of the sound emission of axial fans under the influence of suction-side heat exchangers, in 25th AIAA/CEAS Aeroacoustics Conference, Vol. AIAA 2019-2618 Session: Acoustic/Fluid Dynamics Interactions X, 20-23 May 2019, Delft, The Netherlands. 2019. https://doi.org/10.2514/6.2019-2618. [Google Scholar]
  2. A. Lucius, M. Schneider, S.S.-D. Bortoli, T. Gerhard, T. Geyer: Aeroacoustic simulation and experimental validation of sound emission of an axial fan applied in a heat pump, in Proceedings of the 23rd International Congress on Acoustics, DEGA-Akustik, Berlin, Germany. 2019. [Google Scholar]
  3. C. Ocker, T.F. Geyer, F. Czwielong, F. Krömer, S. Becker, M. Merkel, W. Pannert: Experimental investigation of the impact of 3d-metal-printed perforated leading edges on airfoil and axial fan noise, in AIAA AVIATION 2020 FORUM, AiAA American Institute of Aeronautics and Astronautics, Reston, VA, USA. 2020, 2529 p. https://doi.org/10.2514/6.2020-2529. [Google Scholar]
  4. F. Krömer, F. Czwielong, S. Becker: Experimental investigation of the sound emission of skewed axial fans with leading-edge serrations. AiAA 57, 12 (2019) 5182–5196. https://doi.org/10.2514/1.J058134. [CrossRef] [Google Scholar]
  5. T.M. Biedermann, P. Czeckay, N. Hintzen, F. Kameier, C. Paschereit: Applicability of aeroacoustic scaling laws of leading edge serrations for rotating application, in Acoustics, Vol. 2, Multidisciplinary Digital Publishing Institute, Basel, Switzerland. 2020, pp. 579–594. https://doi.org/10.3390/acoustics2030030. [CrossRef] [Google Scholar]
  6. F. Czwielong, F. Krömer, P. Chaitanya, S. Becker: Experimental investigation of the influence of different leading edge modifications on the sound emission of axial fans downstream of a heatexchanger, in Proceedings of the 23rd International Congress on Acoustics, DEGA-Akustik, Berlin, Germany. 2019. [Google Scholar]
  7. C. Liu, Z. Ji, Z. Fang: Numerical analysis of acoustic attenuation and flow resistance characteristics of double expansion chamber silencers. Noise Control Engineering Journal 61, 5 (2013) 487-499. https://doi.org/10.3397/1/3761043. [CrossRef] [Google Scholar]
  8. M. Möser, G. Müller: Handbook of Engineering Acoustics. Springer-Verlag Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-540-69460-1. [Google Scholar]
  9. F. Czwielong, S. Floss, M. Kaltenbacher, S. Becker: Influence of a micro-perforated duct absorber on sound emission and performance of axial fans. Applied Acoustics 174 (2021) 107746. https://doi.org/10.1016/j.apacoust.2020.107746. [CrossRef] [Google Scholar]
  10. S. Floß, M. Kaltenbacher, G. Karlowatz: Application and simulation of micro-perforated panels in hvac systems, in Conference: 10th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference, 20-22 June 2018, Graz, Austria. 2018, https://doi.org/10.4271/2018-01-1514. [Google Scholar]
  11. S. Floss, F. Czwielong, F. Krömer, S. Becker, M. Kaltenbacher: Achieving axial fan sound reduction with micro-perforated absorbers, in Fortschritte der Akustik – DAGA 2019 45. Deutsche Jahrestagung für Akustik, 18–21 März 2019, Rostock, DEGA-Akustik. 2019, pp. 1410–1413. [Google Scholar]
  12. B. Dong, D. Xie, F. He, L. Huang: Noise attenuation and performance study of a small-sized contra-rotating fan with microperforated casing treatments. Mechanical Systems and Signal Processing 147 (2021) 107086. https://doi.org/10.1016/j.ymssp.2020.107086. [CrossRef] [Google Scholar]
  13. S. Allam, M. Abom: Fan noise control using micro- perforated splitter silencers. Journal of Vibration and Acoustics 136, 3 (2014) 031017. https://doi.org/10.1115/1.4027245. [CrossRef] [Google Scholar]
  14. S. Sacks, M. Åbom: Modal filters for mitigation of in-duct sound. Acoustical Society of America 29 (2016). https://doi.org/10.1121/2.0000473. [Google Scholar]
  15. S. Allam, M. Åbom: Noise reduction for automotive radiator cooling fans, in FAN 2015, The Institution of Mechanical Engineers, London, GB. 2015. [Google Scholar]
  16. S. Floss, F. Czwielong, S. Becker, M. Kaltenbacher: Micro-perforated panels for noise reduction. e & i Elektrotechnik und Informationstechnik 138, 3 (2021) 171–178. https://doi.org/10.1007/s00502-021-00889-y. [CrossRef] [Google Scholar]
  17. D.Y. Maa: Potential of micro-perforated panel absorbers. Journal of the Acoustical Society of America 104, 5 (1998) 2861–2866. https://doi.org/10.1121/1.423870. [Google Scholar]
  18. J.Y. Chung, D.A. Blaser: Transfer function method of measuring in-duct acoustic properties II Experiment. Journal of the Acoustical Society of America 68, 3 (1980) 914–921. https://doi.org/10.1121/1.384779. [CrossRef] [Google Scholar]
  19. L. Jaouen, F.X. Bécot: Acoustical characterization of perforated facings. Journal of the Acoustical Society of America 129, 3 (2011) 1400–1406. https://doi.org/10.1121/1.3552887. [CrossRef] [PubMed] [Google Scholar]
  20. N. Atalla, F. Sgard: Modeling of perforated plates and screens using rigid frame porous media. Journal of Sound and Vibration 303, 5 (2007) 195–208. https://doi.org/10.1016/j.jsv.2007.01.012. [Google Scholar]
  21. DIN EN ISO 10534: Acoustics – Determination of sound absorption coeffcient and impedance in impedance tubes – Part 2: Transfer function method. Berlin Beuth Verlag, Berlin, Germany, 2010. [Google Scholar]
  22. J.F. Allard: Propagation of Sound in Porous Media. Elsevier, London, 2015. https://doi.org/10.1002/9780470747339. [Google Scholar]
  23. I. O. f. S. DIN EN ISO 5801: Industrial fans-performance testing using standardized airways. 2007. [Google Scholar]
  24. F.J. Krömer: Sound emission of low-pressure axial fans under distorted inflow conditions, doctoralthesis. FAU University Press, Erlangen, Germany, 2018. https://doi.org/10.25593/978-3-96147-089-1. [Google Scholar]
  25. F.J. Zenger, A. Renz, M. Becher, S. Becker: Experimental investigation of the noise emission of axial fans under distorted inflow conditions. Journal of Sound and Vibration 383 (2016) 124–145. https://doi.org/10.1016/j.jsv.2016.07.035. [Google Scholar]
  26. E. DIN, 7235: Akustik–labormessungen an schalldämpfern in kanälen–einfügungsdämpfungsmaß, Strömungsgeräusch und Gesamtdruckverlust. Berlin Beuth Verlag, Berlin, 2010. [Google Scholar]
  27. I. O. f. S. DIN EN ISO 3745: Acoustics – determination of sound power levels and sound energy levels of noise sources using sound pressure – precision methods for anechoic rooms and hemi-anechoic rooms. Berlin Beuth Verlag, Berlin, 2012. [Google Scholar]
  28. I.H. Abbott, A.E. Von Doenhoff: Theory of wing sections, including a summary of airfoil data. Courier Corporation, New York, USA, 1959. [Google Scholar]
  29. L. Jaouen, F.-X. Bécot: Acoustical characterization of perforated facings. The Journal of the Acoustical Society of America 129, 3 (2011) 1400–1406. https://doi.org/10.1121/1.3552887. [Google Scholar]
  30. M. Möser: Technische Akustik. Springer-Verlag, Heidelberg, Germany, 2012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.