Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 36
Number of page(s) 6
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2021029
Published online 16 August 2021
  1. E.H. Berger: Hearing protection devices. The noise manual, Revised Fifth edition, AIHA Press, Fairfax, VA, 2003. [Google Scholar]
  2. H. Mueller, K. Bright, J. Northern: Studies of the hearing aid occlusion effect. Seminars in Hearing 17, 1 (1996) 21–31. [Google Scholar]
  3. S. Stenfelt, S. Reinfeldt: A model of the occlusion effect with bone-conducted stimulation. International Journal of Audiology 46, 10 (2007) 595–608. https://doi.org/10.1080/14992020701545880. [Google Scholar]
  4. E.H. Huizing: Bone conduction-the influence of the middle ear. Acta Oto-Laryngologica Suppl. 155 (1960) 1–99. [Google Scholar]
  5. J. Tonndorf: Bone conduction. Studies in experimental animals. Acta Oto-Laryngologica Suppl. 213 (1966) 1–132. [Google Scholar]
  6. J. Tonndorf: Animal experiments in bone conduction: clinical conclusions. Transactions of the American Laryngological, Rhinological and Otological Society 52 (1964) 22–41. https://doi.org/10.1177/000348946407300308. [Google Scholar]
  7. J. Tonndorf: Bone conduction, in: J.V. Tobias (Ed.), Foundations of Modern Auditory Theory, Vol. 2, Academic Press, New York, 1972, pp. 195–237. [Google Scholar]
  8. K. Carillo, O. Doutres, F. Sgard: Theoretical investigation of the low frequency fundamental mechanism of the objective occlusion effect induced by bone-conducted stimulation. Journal of the Acoustical Society of America 147, 5 (2020) 3476–3489. https://doi.org/10.1121/10.0001237. [Google Scholar]
  9. F.K. Kuk: Perceptual consequence of vents in hearing aids. British Journal of Audiology 25, 3 (1991) 163–169. [Google Scholar]
  10. M.A. Fagelson, F.N. Martin: The occlusion effect and ear canal sound pressure level. American Journal of Audiology 7, 2 (1998) 50–54. [Google Scholar]
  11. S.A. Small, N. Hu: Maturation of the occlusion effect: A bone conduction auditory steady state response study in infants and adults with normal hearing. Ear and Hearing 32, 6 (2011) 708–719. [Google Scholar]
  12. M. Brummund, F. Sgard, Y. Petit, F. Laville: Three-dimensional finite element modeling of the human external ear: Simulation study of the bone conduction occlusion effect. Journal of the Acoustical Society of America 135, 3 (2014) 1433–1444. [Google Scholar]
  13. J. Schroeter, C. Poesselt: The use of acoustical test fixtures for the measurement of hearing protector attenuation. Part II: Modeling the external ear, simulating bone conduction, and comparing test fixture and real-ear data. Journal of the Acoustical Society of America 80, 2 (1986) 505–527. [Google Scholar]
  14. S. Stenfelt, T. Wild, N. Hato, R.L. Goode: Factors contributing to bone conduction: The outer ear. Journal of the Acoustical Society of America 113, 2 (2003) 902–913. https://doi.org/10.1121/1.1534606. [Google Scholar]
  15. T. Zurbrügg, A. Stirnemannn, M. Kuster, H. Lissek: Investigations on the physical factors influencing the ear canal occlusion effect caused by hearing aids. Acta Acustica united with Acustica 100, 3 (2014) 527–536. https://doi.org/10.3813/AAA.918732. [Google Scholar]
  16. M.O. Hansen: Occlusion effects – Part II – A study of the occlusion effect mechanism and the influence of the Earmould properties, Ph.D. Thesis. Department of Acoustic Technology, Technical University of Denmark, Denmark, 1998. [Google Scholar]
  17. E.A.G. Shaw, M.R. Stinson: Network concepts and energy flow in the human middle ear. Journal of the Acoustical Society of America 69, 1 (1981) 43. [Google Scholar]
  18. F.P. Mechel (Ed.): Formulas of acoustics. 2nd ed., Springer, Berlin; New York, 2008. [Google Scholar]
  19. F.C. Karal: The analogous acoustical impedance for discontinuities and constrictions of circular cross section. Journal of the Acoustical Society of America 25, 2 (1953) 327–334. [Google Scholar]
  20. M. Bruneau: Fundamentals of acoustics. John Wiley & Sons, New York, 2013. [Google Scholar]
  21. C.E. Stepp, S.E. Voss: Acoustics of the human middle-ear air space. Journal of the Acoustical Society of America 118, 2 (2005) 861–871. https://doi.org/10.1121/1.1494445. [Google Scholar]
  22. S. Stenfelt: Model predictions for bone conduction perception in the human. Hearing Research 340 (2016) 135–143. https://doi.org/10.1016/j.heares.2015.10.014. [Google Scholar]
  23. M. Brummund: Study of the occlusion effect induced by an earplug: Numerical modelling and experimental validation, PhD Thesis. École de technologie supérieure, Montréal, Québec, Canada, 2014. [Google Scholar]
  24. R. Carle, S. Laugesen, C. Nielsen: Observations on the relations among occlusion effect, compliance, and vent size. Journal of the American Academy of Audiology 13, 1 (2002) 13. [Google Scholar]
  25. A. Winkler, M. Latzel, I. Holube: Open versus closed hearing-aid fittings: A literature review of both fitting approaches. Trends in Hearing 20 (2016) 2331216516631741. https://doi.org/10.1177/2331216516631741. [Google Scholar]
  26. G. Viallet, F. Sgard, F. Laville, H. Nélisse: Investigation of the variability in earplugs sound attenuation measurements using a finite element model. Applied Acoustics 89 (2015) 333–344. https://doi.org/10.1016/j.apacoust.2014.10.007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.