Issue
Acta Acust.
Volume 5, 2021
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 59
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2021053
Published online 24 December 2021
  1. K. Friston: A theory of cortical responses. Philosophical Transactions of the Royal Society B 360 (2005) 815–836. https://doi.org/10.1098/rstb.2005.1622. [Google Scholar]
  2. H.E. Den Ouden, P. Kok, F.P. De Lange: How prediction errors shape perception, attention, and motivation. Frontiers in Psychology 3 (2012). https://doi.org/10.3389/fpsyg.2012.00548. [Google Scholar]
  3. J.L. Gardner: Optimality and heuristics in perceptual neuroscience. Nature Neuroscience 22 (2019) 514–523. https://doi.org/10.1038/s41593-019-0340-4. [Google Scholar]
  4. K. van der Heijden, J.P. Rauschecker, B. de Gelder, E. Formisano: Cortical mechanisms of spatial hearing. Nature Reviews Neuroscience 20 (2019) 609–623. https://doi.org/10.1038/s41583-019-0206-5. [Google Scholar]
  5. J.M. Loomis: Distal attribution and presence. Presence: Teleoperators and Virtual Environment 1 (1992) 113–119. [Google Scholar]
  6. E.H. Weber: On the circumstances under which one is led to refer sensations to external objects. In: Proceedings of the Royal Saxon Society for Science in Leipzig, Leipzig, Germany. 1848, pp. 226–237. [Google Scholar]
  7. V. Best, R. Baumgartner, M. Lavandier, P. Majdak, N. Kopčo: Sound externalization: a review of recent research. Trends in Hearing 24 (2020) 2331216520948390. https://doi.org/10.1177/2331216520948390. [Google Scholar]
  8. J. Blauert: Spatial hearing. The Psychophysics of Human Sound Localization, MIT-Press, Cambridge, MA. 1997. [Google Scholar]
  9. N.I. Durlach, A. Rigopulos, X.D. Pang, W.S. Woods, A. Kulkarni, H.S. Colburn, E.M. Wenzel: On the externalization of auditory images. Presence: Teleoperators and Virtual Environment 1 (1992) 251–257. [Google Scholar]
  10. P. Majdak, R. Baumgartner, C. Jenny: Formation of three-dimensional auditory space. In: The technology of binaural understanding, Springer International Publishing. 2020. [Google Scholar]
  11. A.J. Kolarik, B.C.J. Moore, P. Zahorik, S. Cirstea, S. Pardhan: Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, & Psychophysics 78 (2016) 373–395. https://doi.org/10.3758/s13414-015-1015-1. [Google Scholar]
  12. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. Journal of the Acoustical Society of America 136 (2014) 791–802. https://doi.org/10.1121/1.4887447. [Google Scholar]
  13. E.A. Macpherson, A.T. Sabin: Binaural weighting of monaural spectral cues for sound localization. Journal of the Acoustical Society of America 121 (2007) 3677–3688. https://doi.org/10.1121/1.2722048. [Google Scholar]
  14. A.J. Van Opstal, J. Vliegen, T.V. Esch: Reconstructing spectral cues for sound localization from responses to rippled noise stimuli. PLOS One 12 (2017) e0174185. https://doi.org/10.1371/journal.pone.0174185. [Google Scholar]
  15. J.W.L.R. Strutt: On our perception of sound direction. Philosophical Magazine 13 (1907) 214–232. [Google Scholar]
  16. E.A. Macpherson, J.C. Middlebrooks: Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. Journal of the Acoustical Society of America 111 (2002) 2219–2236. https://doi.org/10.1121/1.1471898. [Google Scholar]
  17. H.G. Hassager, F. Gran, T. Dau: The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment. Journal of the Acoustical Society of America 139 (2016) 2992–3000. https://doi.org/10.1121/1.4950847. [Google Scholar]
  18. B.G. Shinn-Cunningham, S. Santarelli, N. Kopco: Tori of confusion: binaural localization cues for sources within reach of a listener. Journal of the Acoustical Society of America 107 (2000) 1627–1636. [Google Scholar]
  19. S. Devore, A. Ihlefeld, K. Hancock, B. Shinn-Cunningham, B. Delgutte: Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain. Neuron 62 (2009) 123–134. https://doi.org/10.1016/j.neuron.2009.02.018. [Google Scholar]
  20. K.C. Wood, S.M. Town, J.K. Bizley: Neurons in primary auditory cortex represent sound source location in a cue-invariant manner. Nature Communications 10 (2019) 1–15. https://doi.org/10.1038/s41467-019-10868-9. [Google Scholar]
  21. N.C. Higgins, S.A. McLaughlin, T. Rinne, G.C. Stecker: Evidence for cue-independent spatial representation in the human auditory cortex during active listening. Proceedings of the National Academy of Sciences of the United States of America 114 (2017) E7602–E7611. https://doi.org/10.1073/pnas.1707522114. [Google Scholar]
  22. N.H. Salminen, M. Takanen, O. Santala, J. Lamminsalo, A. Altoè, V. Pulkki: Integrated processing of spatial cues in human auditory cortex. Hearing Research 327 (2015) 143–152. https://doi.org/10.1016/j.heares.2015.06.006. [Google Scholar]
  23. C.F. Altmann, S. Terada, M. Kashino, K. Goto, T. Mima, H. Fukuyama, S. Furukawa: Independent or integrated processing of interaural time and level differences in human auditory cortex? Hearing Research 312 (2014) 121–127. https://doi.org/10.1016/j.heares.2014.03.009. [Google Scholar]
  24. E. Schröger: Interaural time and level differences: Integrated or separated processing? Hearing Research 96 (1996) 191–198. https://doi.org/10.1016/0378-5955(96)00066-4. [Google Scholar]
  25. E. Tardif, M.M. Murray, R. Meylan, L. Spierer, S. Clarke: The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans. Brain Research 1092 (2006) 161–176. https://doi.org/10.1016/j.brainres.2006.03.095. [Google Scholar]
  26. B.A. Edmonds, K. Krumbholz: Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? Journal of the Association for Research in Otolaryngology 15 (2014) 103–114. https://doi.org/10.1007/s10162-013-0421-0. [Google Scholar]
  27. H.S. Colburn, S.K. Isabelle: Models of binaural processing based on neural patterns in the medial superior olive. In: Cazals Y, Horner K, Demany L, Eds. Auditory Physiology and Perception, Pergamon, Oxford, UK. 1992, pp. 539–545. [Google Scholar]
  28. S. Baldassi, D.C. Burr: Feature-based integration of orientation signals in visual search. Vision Research 40 (2000) 1293–1300. https://doi.org/10.1016/S0042-6989(00)00029-8. [Google Scholar]
  29. M.A. Thornton, M.E. Weaverdyck, D.I. Tamir: The brain represents people as the mental states they habitually experience. Nature Communications 10 (2019) 1–10. https://doi.org/10.1038/s41467-019-10309-7. [Google Scholar]
  30. J. Palmer, P. Verghese, M. Pavel: The psychophysics of visual search. Vision Research 40 (2000) 1227–1268. https://doi.org/10.1016/S0042-6989(99)00244-8. [Google Scholar]
  31. S. Baldassi, P. Verghese: Comparing integration rules in visual search. Journal of Vision 2 (2002) 3–3. https://doi.org/10.1167/2.8.3. [Google Scholar]
  32. Y.-H. Song, J.-H. Kim, H.-W. Jeong, I. Choi, D. Jeong, K. Kim, S.-H. Lee: A neural circuit for auditory dominance over visual perception. Neuron 93 (2017) 940–954.e6. https://doi.org/10.1016/j.neuron.2017.01.006. [Google Scholar]
  33. W.M. Hartmann, A. Wittenberg, On the externalization of sound images, Journal of the Acoustical Society of America 99 (1996) 3678–3688. [Google Scholar]
  34. R. Baumgartner, D.K. Reed, B. Tóth, V. Best, P. Majdak, H.S. Colburn, B. Shinn-Cunningham: Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences of the United States of America 114 (2017) 9743–9748. https://doi.org/10.1073/pnas.1703247114. [Google Scholar]
  35. A.W. Boyd, W.M. Whitmer, J.J. Soraghan, M.A. Akeroyd: Auditory externalization in hearing-impaired listeners: The effect of pinna cues and number of talkers. Journal of the Acoustical Society of America 131 (2012) EL268––EL274. https://doi.org/10.1121/1.3687015. [Google Scholar]
  36. S. Li, R. Baumgartner, J. Peissig: Modeling perceived externalization of a static, lateral sound image. Acta Acustica 4 (2020) 21. https://doi.org/10.1051/aacus/2020020. [Google Scholar]
  37. R. Baumgartner, P. Majdak, B. Laback: Modeling the effects of sensorineural hearing loss on sound localization in the median plane. Trends in Hearing 20 (2016) 1–11. https://doi.org/10.1177/2331216516662003. [Google Scholar]
  38. G.D. Romigh, B.D. Simpson, N. Iyer: Ear to out there: a magnitude based parameterization scheme for sound source externalization. In: Presented at the 22nd International Conference on Auditory Display (ICAD–2016), Canberra, Australia, July 2, 2016. [Google Scholar]
  39. E. Georganti, T. May, S. van de Par, J. Mourjopoulos: Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Transactions on Audio, Speech, and Language Processing 21 (2013) 1727–1741. https://doi.org/10.1109/TASL.2013.2260155. [Google Scholar]
  40. T. Leclère, M. Lavandier, F. Perrin: On the externalization of sound sources with headphones without reference to a real source. Journal of the Acoustical Society of America 146 (2019) 2309–2320. https://doi.org/10.1121/1.5128325. [Google Scholar]
  41. P.X. Zhang, W.M. Hartmann: On the ability of human listeners to distinguish between front and back. Hearing Research 260 (2010) 30–46. [Google Scholar]
  42. H.S. Colburn, A. Kulkarni: Models of Sound Localization. In: A.N. Popper, R.R. Fay, Eds., Sound source localization. Springer, New York, 2005, pp. 272–316. [Google Scholar]
  43. P. Zakarauskas, M.S. Cynader: A computational theory of spectral cue localization. Journal of the Acoustical Society of America 94 (1993) 1323–1331. [Google Scholar]
  44. R. Baumgartner, P. Majdak, B. Laback: Assessment of sagittal-plane sound localization performance in spatial-audio applications. In: The Technology of Binaural Listening, Springer, Berlin, Heidelberg, 2013, pp. 93–119. [Google Scholar]
  45. A.W. Mills: On the minimum audible angle. Journal of the Acoustical Society of America 30 (1958) 237–246. https://doi.org/10.1121/1.1909553. [Google Scholar]
  46. R.F. Lyon: All pole models of auditory filtering. In: E.R. Lewis, G.R. Long, R.F. Lyon, P.M. Narins, C.R. Steele, E. Hecht-Poinar, Eds. Diversity in auditory mechanics, World Scientific Publishing, Singapore. 1997, pp. 205–211. [Google Scholar]
  47. R. Baumgartner, P. Majdak, B. Laback: Erratum: Modeling sound-source localization in sagittal planes for human listeners [J. Acoust. Soc. Am. 136, 791–802 (2014)]. Journal of the Acoustical Society of America 140 (2016) 2456–2456. https://doi.org/10.1121/1.4964753 [Google Scholar]
  48. M.S.A. Zilany, I.C. Bruce, L.H. Carney: Updated parameters and expanded simulation options for a model of the auditory periphery. Journal of the Acoustical Society of America 135 (2014) 283–286. https://doi.org/10.1121/1.4837815. [Google Scholar]
  49. B.F.G. Katz, M. Noisternig: A comparative study of interaural time delay estimation methods. Journal of the Acoustical Society of America 135 (2014) 3530–3540. https://doi.org/10.1121/1.4875714. [Google Scholar]
  50. L.A.J. Reiss, E.D. Young: Spectral edge sensitivity in neural circuits of the dorsal cochlear nucleus. The Journal of Neuroscience 25 (2005) 3680–3691. https://doi.org/10.1523/JNEUROSCI.4963-04.2005. [Google Scholar]
  51. B.J. May: Role of the dorsal cochlear nucleus in the sound localization behavior of cats. Hearing Research 148 (2000) 74–87. https://doi.org/10.1016/S0378-5955(00)00142-8. [Google Scholar]
  52. S. Spagnol: On distance dependence of Pinna spectral patterns in head-related transfer functions. Journal of the Acoustical Society of America 137 (2015) EL58–EL64. https://doi.org/10.1121/1.4903919. [Google Scholar]
  53. D.S. Brungart, W.M. Rabinowitz: Auditory localization of nearby sources. Head-related transfer functions. Journal of the Acoustical Society of America 106 (1999) 1465–1479. https://doi.org/10.1121/1.427180. [Google Scholar]
  54. E.A. Macpherson, J.C. Middlebrooks: Vertical-plane sound localization probed with ripple-spectrum noise. Journal of the Acoustical Society of America 114 (2003) 430–445. https://doi.org/10.1121/1.1582174. [Google Scholar]
  55. S.L. Denham, I. Winkler: Predictive coding in auditory perception: challenges and unresolved questions. European Journal of Neuroscience 51 (2020) 1151–1160. https://doi.org/10.1111/ejn.13802. [Google Scholar]
  56. F. Klein, S. Werner, T. Mayenfels: Influences of training on externalization of binaural synthesis in situations of room divergence. Journal of the Audio Engineering Society 65 (2017) 178–187. [Google Scholar]
  57. W.O. Brimijoin, A.W. Boyd, M.A. Akeroyd: The contribution of head movement to the externalization and internalization of sounds. PLOS One 8 (2013) e83068. https://doi.org/10.1371/journal.pone.0083068. [Google Scholar]
  58. S. Li, R. Schlieper, J. Peissig: The role of reverberation and magnitude spectra of direct parts in contralateral and ipsilateral ear signals on perceived externalization. Applied Sciences 9 (2019) 460. https://doi.org/10.3390/app9030460. [Google Scholar]
  59. E. Hendrickx, P. Stitt, J.-C. Messonnier, J.-M. Lyzwa, B.F.G. Katz, C. de Boishéraud: Influence of head tracking on the externalization of speech stimuli for non-individualized binaural synthesis. Journal of the Acoustical Society of America 141 (2017) 2011–2023. https://doi.org/10.1121/1.4978612. [Google Scholar]
  60. J.M. Kates, K.H. Arehart, R.K. Muralimanohar, K. Sommerfeldt: Externalization of remote microphone signals using a structural binaural model of the head and pinna. Journal of the Acoustical Society of America 143 (2018) 2666–2677. https://doi.org/10.1121/1.5032326. [Google Scholar]
  61. C. Mendonça, G. Campos, P. Dias, J.A. Santos: Learning auditory space: generalization and long-term effects, PLOS One 8 (2013) e77900. https://doi.org/10.1371/journal.pone.0077900. [Google Scholar]
  62. E. Hendrickx, P. Stitt, J.-C. Messonnier, J.-M. Lyzwa, B. Katz, C. de Boishéraud: Improvement of externalization by listener and source movement using a “Binauralized” microphone array. Journal of the Audio Engineering Society 65 (2017) 589–599. https://doi.org/10.17743/jaes.2017.0018. [Google Scholar]
  63. G. McLachlan, P. Majdak, J. Reijniers, H. Peremans: Towards modelling active sound localisation based on Bayesian inference in a static environment. Acta Acustica 5 (2021) 45. https://doi.org/10.1051/aacus/2021039. [Google Scholar]
  64. D. Marelli, R. Baumgartner, P. Majdak: Efficient approximation of head-related transfer functions in Subbands for accurate sound localization. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23 (2015) 1130–1143. https://doi.org/10.1109/TASLP.2015.2425219. [Google Scholar]
  65. L.S.R. Simon, N. Zacharov, B.F.G. Katz: Perceptual attributes for the comparison of head-related transfer functions. Journal of the Acoustical Society of America 140 (2016) 3623–3632. https://doi.org/10.1121/1.4966115. [Google Scholar]
  66. S. Crawford, R. Audfray, J.-M. Jot: Quantifying HRTF spectral magnitude precision in spatial computing applications. In: Presented at the Audio Engineering Society Conference: 2020 AES International Conference on Audio for Virtual and Augmented Reality, 2020. [Google Scholar]
  67. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.x: a toolbox for reproducible research in auditory modeling. Acta Acustica (2021). [Google Scholar]
  68. The AMT Team: The Auditory Modeling Toolbox 1.x Full Packages, 2021. https://sourceforge.net/projects/amtoolbox/files/AMT%201.x/amtoolbox-full-1.0.0.zip/download. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.