Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 54
Number of page(s) 20
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2021047
Published online 20 December 2021
  1. D.J. Miles, D.M. Finley: Factors that influence the effectiveness of rumble strip design. Transportation Research Record: Journal of the Transportation Research Board 2030 (2007) 1–9. [CrossRef] [Google Scholar]
  2. J. Kragh, B. Andersen, T.N. Sigurd: Low noise rumble strips on roads – A pilot study. In: Proceedings of the Internoise 2007 (2007) 755–764. [Google Scholar]
  3. O. Houix, S. Bonnot, F. Vienne, B. Vericel, L. Pardo, N. Misdariis, P. Susini: Perceptual influence of the vibratory component on the audio component of alarms produced by rumble strips, by measuring reaction times, in Proceedings of the Acoustics 2012 Nantes Conference, 2012, pp. 1083–1088. [Google Scholar]
  4. E. Donnell, H. Sommer, P.M. Garvey, S.C. Himes, D.J. Torbic: Statistical model of in-vehicle sound generated from highway rumble strips. International Journal of Vehicle Noise and Vibration 5, 4 (2009) 308–328. [CrossRef] [Google Scholar]
  5. T.D. Blumenthal, W.K. Berg: Stimulus rise time, intensity, and bandwidth effects on acoustic startle amplitude and probability. Psychophysiology 23, 6 (1986) 635–641. [CrossRef] [PubMed] [Google Scholar]
  6. Delaware Department of Transportation: SR 24 Longitudinal edge line rumble strip noise study, 2012. https://deldot.gov/Programs/DSHSP/pdfs/RumbleStrip_compressed.pdf. Last visited 3rd Dec. 2021 [Google Scholar]
  7. G. Watts, R. Stait, N. Godfrey, L. Chinn, R. Layfield: Development of a novel traffic calming surface “rippleprint” prepared for charging and local transport division, Transport Research Laboratory (TRL), Crowthorne, Berkshire, UK, 2002. [Google Scholar]
  8. P. Donavan, B. Rymer: Design and evaluation of quieter highway rumble strips 1 (2013) 605–621. [Google Scholar]
  9. International Organization for Standardization, ISO 1996–2:2007: Acoustics – description, measurement and assessment of environmental noise – part 2: determination of environmental noise levels, 2007. [Google Scholar]
  10. Deutsches Institut für Normung, DIN 45681: Acoustics – Determination of tonal components of noise and determination of a tone adjustment for the assessment of noise immissions, 2005. [Google Scholar]
  11. A. Hegewald, A. Vesper, M. Irzik, R. Krautscheid, K. Sander, A. Lorenzen, U. Löffler, O. Ripke, F. Bommert, Sicherheitswirkung, Dauerhaftigkeit und Lärmemission von eingefrästen Rüttelstreifen [Safety effect, durability and noise emission of milled rumble strips], Fachverlag NW in der Carl Ed. Schünemann KG, Bremen, Germany, 2018. [Google Scholar]
  12. P. Donavan, The influence of tires on rumble strip noise and vibration, in INTER-NOISE 2019 Madrid – 48th International Congress and Exhibition on Noise Control Engineering, 2019, pp. 984–995. [Google Scholar]
  13. C.H. Kasess, T. Maly, P. Majdak, H. Waubke: The relation between psychoacoustical factors and annoyance under different noise reduction conditions for railway noise. The Journal of the Acoustical Society of America 141, 5 (2017) 3151–3163. [CrossRef] [PubMed] [Google Scholar]
  14. M.E. Nilsson, M. Andéhn, P. Leśna: Evaluating roadside noise barriers using an annoyance-reduction criterion. The Journal of the Acoustical Society of America 124, 6 (2008) 3561–3567. [CrossRef] [PubMed] [Google Scholar]
  15. R.B. Raggam, M. Cik, R.R. Höldrich, K. Fallast, E. Gallasch, M. Fend, A. Lackner, E. Marth: Personal noise ranking of road traffic: subjective estimation versus physiological parameters under laboratory conditions. International Journal of Hygiene and Environmental Health 210, 2 (2007) 97–105. [CrossRef] [PubMed] [Google Scholar]
  16. M. Müller, A. Telle, A. Fiebig, Psychoakustische Wirkung von Fahrbahnmarkierungen [Psychoacoustic effect of road markings], Fachverlag NW in der Carl Ed. Schünemann KG, Bremen, Germany, 2015. [Google Scholar]
  17. J. Edworthy, S. Loxley, I. Dennis: Improving auditory warning design: Relationship between warning sound parameters and perceived urgency. The Journal of the Human Factors 33, 2 (1991) 205–231. [CrossRef] [PubMed] [Google Scholar]
  18. C. Suied, P. Susini, S. McAdams: Evaluating warning sound urgency with reaction times. Journal of Experimental Psychology: Applied 14, 3 (2008) 201–212. [CrossRef] [PubMed] [Google Scholar]
  19. Austrian Standards, ÖNORM B 3584–1:2018: Asphaltmischgut–Mischgutanforderungen–Teil 1: Splittmastixasphalt–Empirischer Ansatz–Regeln zur Umsetzung der ÖNORM EN 13108–5 [Bituminous mixtures–Material specifications–Part 1: Stone mastic asphalt–Empirical approach–Rules for the implementation of ÖNORM EN 13108–5], 2018. [Google Scholar]
  20. A. Weninger-Vycudil, P. Simanek, T. Rohringer, J. Haberl: Handbuch Pavement Management in Österreich 2009[Handbook Pavement Management in Austria 2009]. Schriftenreihe Straϐenforschung des Bundesministeriums fϋr Verkehr, Innovation und Technologie 584 (2009) 120. [Google Scholar]
  21. R Core Team: Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. [Google Scholar]
  22. Deutsches Institut für Normung: DIN 45631/A1: Calculation of loudness level and loudness from the sound spectrum – Zwicker method – Amendment 1: Calculation of the loudness of time-variant sound, 2010. [Google Scholar]
  23. Deutsches Institut für Normung: DIN 45692: Measurement technique for the simulation of the auditory sensation of sharpness, 2009. [Google Scholar]
  24. W. Aures: Berechnungsverfahren für den Wohlklang beliebiger Schallsignale, ein Beitrag zur gehörbezogenen Schallanalyse [A procedure for calculating the consonance of any sound, a contribution to auditory sound analysis]. Ph.D. Thesis, Technical University of Munich 1984. [Google Scholar]
  25. R. Sottek, Modelle zur Signalverarbeitung im menschlichen Gehör [Signal processing models for the human auditory system]. Ph.D. Thesis, RWTH Aachen, 1993. [Google Scholar]
  26. E. Terhardt, G. Stoll, M. Seewann: Algorithm for extraction of pitch and pitch salience from complex tonal signals. Journal of the Acoustical Society of America 71, 3 (1982) 679–688. [CrossRef] [Google Scholar]
  27. J. Vos: Annoyance caused by the sounds of a magnetic levitation train. The Journal of the Acoustical Society of America 115, 4 (2004) 1597–1608. [CrossRef] [PubMed] [Google Scholar]
  28. C.H. Kasess, A. Noll, P. Majdak, H. Waubke: Effect of train type on annoyance and acoustic features of the rolling noise. The Journal of the Acoustical Society of America 134, 2 (2013) 1071–1081. [CrossRef] [PubMed] [Google Scholar]
  29. H. Lane, A. Catania, S. Stevens: Voice level: Autophonic scale, perceived loudness, and effects of sidetone. Journal of the Acoustical Society of America 33, 2 (1961) 160–167. [CrossRef] [Google Scholar]
  30. G.E. Schwarz: Estimating the dimension of a model. Annals of Statistics 6, 2 (1978) 461–464. [CrossRef] [Google Scholar]
  31. W.N. Venables, B.D. Ripley: Modern applied statistics with S (4th ed.), Springer, New York, 2002. [CrossRef] [Google Scholar]
  32. J. Fox, S. Weisberg: An R companion to applied regression (3rd ed.), Sage, Thousand Oaks, CA, 2019. [Google Scholar]
  33. I. Baumann, M.A. Bellmann, V. Mellert, R. Weber: Wahrnehmungs- und Unterschiedsschwellen von Vibrationen auf einem Kraftfahrzeugsitz [Perception- and difference thresholds of vibrations on a driver’s seat]. Fortschritte der Akustik – DAGA 1 (2001) 292–293. [Google Scholar]
  34. D. Duhamel: Efficient calculation of the three-dimensional sound pressure field around a noise barrier. Journal of Sound and Vibration 197, 5 (1996) 547–571. [CrossRef] [Google Scholar]
  35. C.H. Kasess, W. Kreuzer, H. Waubke: Deriving correction functions to model the efficiency of noise barriers with complex shapes using boundary element simulations. Applied Acoustics 102 (2016) 88–99. [CrossRef] [Google Scholar]
  36. R.A. Broadbent, D.J. Thompson, C.J.C. Jones: The acoustic properties of railway ballast. Euronoise (2009) 3307–3316. [Google Scholar]
  37. H. Waubke, C.H. Kasess: Simulation of the noise radiation and shielding with boundary element method (BEM), in Proceedings of the ICSV23, 2016. [Google Scholar]
  38. International Organization for Standardization: ISO 3095: 2013 Acoustics – Railway applications – Measurement of noise emitted by railbound vehicles, 2013. [Google Scholar]
  39. C.H. Kasess, H. Waubke, M. Conter, C. Kirisits, R. Wehr, H. Ziegelwanger: The effect of railway platforms and platform canopies on sound propagation. Applied Acoustics 151 (2019) 137–152. [CrossRef] [Google Scholar]
  40. J. Defrance, P. Jean: Integration of the efficiency of noise barrier caps in a 3D ray tracing method. Case of a T-shaped diffracting device. Applied Acoustics 64, 8 (2003) 765–780. [CrossRef] [Google Scholar]
  41. C.H. Kasess, H. Waubke: Moving sources and the 2.5D Helmholtz boundary element method, in Proceedings International Congress on Acoustics, Aachen, 2019. [Google Scholar]
  42. D. Marelli, P. Balazs: On pole-zero model estimation methods minimizing a logarithmic criterion for speech analysis. IEEE Transactions on Audio, Speech, and Language Processing 18, 2 (2010) 237–248. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.