Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 53
Number of page(s) 13
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2021046
Published online 03 December 2021
  1. A. Chaigne, J. Kergomard: Acoustics of musical instruments. Springer, 2016. [CrossRef] [Google Scholar]
  2. F. Silva, C. Vergez, P. Guillemain, J. Kergomard, V. Debut: Moreesc: a framework for the simulation and analysis of sound production in reed and brass instruments. Acta Acustica united with Acustica 100, 1 (2014) 126–138. [CrossRef] [Google Scholar]
  3. J.S. Cullen, J. Gilbert, D.M. Campbell: Brass instruments: linear stability analysis and experiments with an artificial mouth. Acta Acustica united with Acustica 86, 4 (2000) 704–724. [Google Scholar]
  4. L. Velut, C. Vergez, J. Gilbert, M. Djahanbani: How well can linear stability analysis predict the behaviour of an outward-striking valve brass instrument model?. Acta Acustica united with Acustica 103, 1 (2017) 132–148. [CrossRef] [Google Scholar]
  5. V. Debut, J. Antunes, O. Inácio: Linear modal stability analysis of bowed-strings. The Journal of the Acoustical Society of America 141, 3 (2017) 2107–2120. [CrossRef] [PubMed] [Google Scholar]
  6. V. Fréour, L. Guillot, H. Masuda, S. Usa, E. Tominaga, Y. Tohgi, C. Vergez, B. Cochelin: Numerical continuation of a physical model of brass instruments: Application to trumpet comparisons. The Journal of the Acoustical Society of America 148, 2 (2020) 748–758. [CrossRef] [PubMed] [Google Scholar]
  7. J. Gilbert, S. Maugeais, C. Vergez: Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation. Acta Acustica 46 (2020) 27. [CrossRef] [EDP Sciences] [Google Scholar]
  8. T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.B. Doc, B. Cochelin: Influence of the “ghost reed” simplification on the bifurcation diagram of a saxophone model. Acta Acustica united with Acustica 105, 6 (2019) 1291–1294. [CrossRef] [Google Scholar]
  9. C.A. Macaluso, J.P. Dalmont: Trumpet with near-perfect harmonicity: Design and acoustic results. The Journal of the Acoustical Society of America 129, 1 (2011) 404–414. [CrossRef] [PubMed] [Google Scholar]
  10. W. Kausel: Bore reconstruction of tubular ducts from its acoustic input impedance curve. IEEE Transactions on Instrumentation and Measurement 53, 4 (2004) 1097–1105. [CrossRef] [Google Scholar]
  11. P. Avitabile: Modal testing: a practitioner’s guide. John Wiley & Sons, 2017. [CrossRef] [Google Scholar]
  12. D.J. Ewins: Modal testing: theory, practice and application. John Wiley & Sons, 2009. [Google Scholar]
  13. T. Colinot: Numerical simulation of woodwind dynamics: investigating nonlinear sound production behavior in saxophone-like instruments, PhD thesis. Aix-Marseille Université, 2020. [Google Scholar]
  14. P.A. Taillard, F. Silva, P. Guillemain, J. Kergomard: Modal analysis of the input impedance of wind instruments. application to the sound synthesis of a clarinet. Applied Acoustics 141 (2018) 271–280. [CrossRef] [Google Scholar]
  15. B. Peeters, J. Lau, J. Lanslot, H. Van der Auweraer: Automatic modal analysis – myth or reality? Sound and Vibration 42, 3 (2008) 17. [Google Scholar]
  16. K. Ege, X. Boutillon, B. David: High-resolution modal analysis. Journal of Sound and Vibration 325, 4–5 (2009) 852–869. [CrossRef] [Google Scholar]
  17. R. Badeau, B. David, G. Richard: A new perturbation analysis for signal enumeration in rotational invariance techniques. IEEE Transactions on Signal Processing 54, 2 (2006) 450–458. [CrossRef] [Google Scholar]
  18. K. Ege, X. Boutillon, M. Rébillat: Vibroacoustics of the piano soundboard: (non) linearity and modal properties in the low-and mid-frequency ranges. Journal of Sound and Vibration 332, 5 (2013) 1288–1305. [CrossRef] [Google Scholar]
  19. B. Elie, F. Gautier, B. David: Macro parameters describing the mechanical behavior of classical guitars. The Journal of the Acoustical Society of America 132, 6 (2012) 4013–4024. [CrossRef] [PubMed] [Google Scholar]
  20. E. Maestre, G.P. Scavone, J.O. Smith, Joint modeling of impedance and radiation as a recursive parallel filter structure for efficient synthesis of wind instrument sound, in: Proceedings of the 21st International Conference on Digital Audio Effects, 2018, pp. 4–8. [Google Scholar]
  21. J. Kergomard, V. Debut, D. Matignon: Resonance modes in a one-dimensional medium with two purely resistive boundaries: Calculation methods, orthogonality, and completeness. The Journal of the Acoustical Society of America 119, 3 (2006) 1356–1367. [CrossRef] [Google Scholar]
  22. M. Géradin, D.J. Rixen: Mechanical vibrations: theory and application to structural dynamics. John Wiley & Sons, 2014. [Google Scholar]
  23. A. Mamou-Mani, D.B. Sharp: Evaluating the suitability of acoustical measurement techniques and psychophysical testing for studying the consistency of musical wind instrument manufacturing. Applied Acoustics 71, 7 (2010) 668–674. [CrossRef] [Google Scholar]
  24. I. Markovsky, J. Boets, B. Vanluyten, K. De Cock, B. De Moor: When is a pole spurious? in: International Conference on Noise and Vibration Engineering, 2006, pp. 1615–1626. [Google Scholar]
  25. J. Gilbert, L. Leblanc, C. Vergez: L’analyse de stabilité linéaire pour évaluer la facilité d’émission des cuivres. etude comparative de trombones ténor et basse, in: 14e Congrès Français d’Acoustique, Le Havre, France, 2018. [Google Scholar]
  26. M. Campbell, J. Gilbert, A. Myers: The science of brass instruments, Springer, 2021. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.