Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 10
Number of page(s) 6
Section Speech
DOI https://doi.org/10.1051/aacus/2022006
Published online 29 March 2022
  1. F. Trendelenburg: Beitrag zur Frage der Stimmrichtwirkung [Contribution to the question of the directivity of voice]. Zeitschrift für technische Physik 1, 11 (1929) 558–563. [Google Scholar]
  2. P. Kocon, B.B. Monson: Horizontal directivity patterns differ between vowels extracted from running speech. Journal of the Acoustical Society of America 144, 1 (2018) EL7–EL12. [CrossRef] [PubMed] [Google Scholar]
  3. W.T. Chu, A.C.C. Warnock: Detailed directivity of sound fields around human talkers. NRC-CNRC, NRC Publications Archive Archives des publications du CNRC, 2002, pp. 1–47. [Google Scholar]
  4. B. Katz, C. d’Alessandro: Directivity measurements of the singing voice, in 19th International Congress on Acoustics, Madrid, Spain, 2–7 Sept, 2007. [Google Scholar]
  5. J.L. Flanagan: Analog measurements of sound radiation from the mouth. Journal of the Acoustical Society of America 32 (1960) 1613–1620. [CrossRef] [Google Scholar]
  6. J. Struve: Directivity of real and artificial speakers for room acoustic measurements. Master’s Thesis, Tech. Univ. Berlin, 2018. [Google Scholar]
  7. B.B. Monson, E.J. Hunter, A.J. Lotto, B.H. Story: The perceptual significance of high-frequency energy in the human voice. Frontiers in Psychology 5 (2014) 587. [PubMed] [Google Scholar]
  8. J. Wendt, B. Weyers, J. Stienen, A. Bӧnsch, M. Vorländer, T.W. Kuhlen: Influence of directivity on the perception of embodied conversational agents’ speech, in Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents, Paris, France on 2–5 July, 2019. ACM. 2019, pp. 130–132. [Google Scholar]
  9. M. Frank, M. Brandner: Perceptual evaluation of spatial resolution in directivity patterns, in DAGA Conf., Rostock, Germany, 18–21 March 2019. [Google Scholar]
  10. A. Lindau, S. Weinzierl: An instrument for software-based measurement of binaural room impulse responses in multiple degrees of freedom, in VDT Int. Conv., Leipzig, Germany on 16–19 Nov, 2006. [Google Scholar]
  11. ITU-R BS.1534-3: Method for the subjective assessment of intermediate quality level of audio systems. International Telecommunication Union, Geneva, Switzerland, 2015. [Google Scholar]
  12. S. Le Bagousse: Elaboration d’une méthode de test pour l’évaluation subjective de la qualité des sons spatialisés [Elaboration of a test method for the subjective evaluation of the quality of spatialized sounds]. Acoustique, Univ. Bretagne Occidentale, Brest, France, 2014. [Google Scholar]
  13. C. Porschmann, J.M. Arend: A method for spatial upsampling of voice directivity by directional equalization. Journal of the Audio Engineering Society 68, 9 (2020) 649–663. [CrossRef] [Google Scholar]
  14. B. Rafaely: Fundamentals of spherical array processing, Vol. 8. Springer, 2015. [CrossRef] [Google Scholar]
  15. M. Schoeffler, F.-R. Stoter, B. Edler, J. Herre: Towards the next generation of web-based experiments: A case study assessing basic audio quality following the ITU-R recommendation BS. 1534 (MUSHRA), in 1st Web Audio Conf., Paris, France on 26–28 Jan, 2015, pp. 1–6. [Google Scholar]
  16. J.F. Culling, Q. Summerfield, D.H. Marshall: Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Communication 14, 1 (1994) 71–95. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.