Issue
Acta Acust.
Volume 6, 2022
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 17
Number of page(s) 24
DOI https://doi.org/10.1051/aacus/2022008
Published online 04 May 2022
  1. R. Meddis, E. Lopez-Poveda, R. Fay, A. Popper (Eds.): Computational Models of the Auditory System. Springer Handbook of Auditory Research. Springer, 2010. [CrossRef] [Google Scholar]
  2. T. Dau, Auditory Processing Models. In: Havelock D., Kuwano S., Vorländer M., Eds. Handbook of Signal Processing in Acoustics, Springer, 2008: 175–196. https://doi.org/10.1007/978-0-387-30441-0_12. [CrossRef] [Google Scholar]
  3. M. Dietz, S. Ewert, V. Hohmann: Auditory model based direction estimation of concurrent speakers from binaural signals, Speech Communication 53 (2011) 592–605. https://doi.org/10.1016/j.specom.2010.05.006. [CrossRef] [Google Scholar]
  4. G. Bustamante, P. Danès, T. Forgue, A. Podlubne, J. Manhès: An information based feedback control for audio-motor binaural localization. Autonomous Robots 42 (2018) 477–490. https://doi.org/10.1007/s10514-017-9639-8. [CrossRef] [Google Scholar]
  5. R. Peng: Reproducible research in computational science. Science 334, 6060 (2011) 1226–1227. https://doi.org/10.1126/science.1213847. [CrossRef] [PubMed] [Google Scholar]
  6. R. Patterson, M. Allerhand, C. Giguère: Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. Journal of the Acoustical Society of America 98 (1995) 1890–1894. https://doi.org/10.1121/1.414456. [CrossRef] [PubMed] [Google Scholar]
  7. B. Fontaine, D. Goodman, V. Benichoux, R. Brette: Brian hears: Online auditory processing using vectorization over channels. Frontiers in Neuroinformatics 5 (2011). https://doi.org/10.3389/fninf.2011.00009. [CrossRef] [Google Scholar]
  8. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.0: the toolbox for reproducible research in auditory modeling. Submitted to Acta Acustica (2021). [Google Scholar]
  9. The AMT team: The Auditory Modeling Toolbox full package (version 1.1.0) [code] (2021), https://sourceforge.net/projects/amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download. [Google Scholar]
  10. T. Biberger, S. Ewert: Envelope and intensity based prediction of psychoacoustic masking and speech intelligibility. Journal of the Acoustical Society of America 140 (2016) 1023–1038. https://doi.org/10.1121/1.4960574. [CrossRef] [PubMed] [Google Scholar]
  11. T. Biberger: GPSM_2016: Generalized Power Spectrum Model (GPSM), 2021. Available at https://gitlab.uni-oldenburg.de/kuxo2262/GPSM_2016, last accessed February 27, 2022. [Google Scholar]
  12. A. Saremi, R. Beutelmann, M. Dietz, G. Ashida, J. Kretzberg, S. Verhulst: A comparative study of seven human cochlear filter models. Journal of the Acoustical Society of America 140 (2016) 1618–1634. https://doi.org/10.1121/1.4960486. [CrossRef] [PubMed] [Google Scholar]
  13. E. Lopez-Poveda: Spectral processing by the peripheral auditory system: Facts and models. International Review of Neurobiology 70 (2005) 7–48. https://doi.org/10.1016/S0074-7742(05)70001-5. [CrossRef] [PubMed] [Google Scholar]
  14. T. Anderson: A comparison of auditory models for speaker independent phoneme recognition. International Conference on Acoustics, Speech, and Signal Processing 2 (1993) 231–234. https://doi.org/10.1109/ICASSP.1993.319277. [Google Scholar]
  15. J. Breebaart, S. van de Par, A. Kohlrausch: On the difference between cross-correlation and EC-based binaural models, in Forum Acusticum, Sevilla, Spain, 2002, pp. 1–6. [Google Scholar]
  16. N. Harlander, R. Huber, S. Ewert: Sound quality assessment using auditory models. Journal of the Audio Engineering Society 62 (2014) 324–336. https://doi.org/10.17743/jaes.2014.0020. [CrossRef] [Google Scholar]
  17. K. Steinmetzger, J. Zaar, H. Relaño-Iborra, S. Rosen, T. Dau: Predicting the effects of periodicity on the intelligibility of masked speech: an evaluation of different modelling approaches. Journal of the Acoustical Society of America 146 (2019) 2562–2576. https://doi.org/10.1121/1.5129050. [CrossRef] [PubMed] [Google Scholar]
  18. M. Rudnicki, O. Schoppe, M. Isik, F. Völk, W. Hemmert: Modeling auditory coding: from sound to spikes. Cell and Tissue Research 361 (2015) 159–175. https://doi.org/10.1007/s00441-015-2202-z. [CrossRef] [PubMed] [Google Scholar]
  19. M. Dietz, J.-H. Lestang, P. Majdak, R. Stern, T. Marquardt, S. Ewert, W. Hartmann, D. Goodman: A framework for testing and comparing binaural models. Hearing Research 360 (2018) 92–106. https://doi.org/10.1016/j.heares.2017.11.010. [CrossRef] [PubMed] [Google Scholar]
  20. P. Søndergaard, P. Majdak: The Auditory Modeling Toolbox. In: Blauert J (Ed.), The Technology of Binaural Listening, Chap. 2, Berlin Heidelberg. 2013, pp. 33–56. [CrossRef] [Google Scholar]
  21. K. Kanders, T. Lorimer, F. Gomez, R. Stoop: Frequency sensitivity in mammalian hearing from a fundamental nonlinear physics model of the inner ear. Scientific Reports 7 (2017) 9931. https://doi.org/10.1038/s41598-017-09854-2. [CrossRef] [PubMed] [Google Scholar]
  22. R. Lyon: Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function. Journal of the Acoustical Society of America 130 (2011) 3893–3904. https://doi.org/10.1121/1.3658470 [CrossRef] [PubMed] [Google Scholar]
  23. V. Hohmann: Frequency analysis and synthesis using a Gammatone filterbank. Acust. Acta Acust. 88 (2002) 433–442. [Google Scholar]
  24. E. Lopez-Poveda, R. Meddis: A human nonlinear cochlear filterbank. Journal of the Acoustical Society of America 110 (2001) 3107–3118. https://doi.org/10.1121/1.1416197. [CrossRef] [PubMed] [Google Scholar]
  25. Q. Tan, L. Carney: A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. Journal of the Acoustical Society of America 114 (2003) 2007–2020. [CrossRef] [PubMed] [Google Scholar]
  26. S. Verhulst, T. Dau, C. Shera: Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. Journal of the Acoustical Society of America 132 (2012) 3842–3848. https://doi.org/10.1121/1.4763989.. [CrossRef] [PubMed] [Google Scholar]
  27. S. Ewert, T. Dau: Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America 108 (2000) 1181–1196. https://doi.org/10.1121/1.1288665 [CrossRef] [Google Scholar]
  28. B. Moore, B. Glasberg, T. Baer: A model for the prediction of thresholds, loudness and partial loudness. Journal of the Audio Engineering Society 45 (1997) 224–240. [Google Scholar]
  29. A. Osses Vecchi, R. García León, A. Kohlrausch: Modelling the sensation of fluctuation strength. Proceedings of Meetings on Acoustics 28, 050005 (2016) 1–8. https://doi.org/10.1121/2.0000410. [Google Scholar]
  30. C. Taal, R. Hendriks, R. Heusdens, J. Jensen: An algorithm for intelligibility prediction of time-frequency weighted noisy speech. IEEE Transactions on Audio, Speech, and Language Processing 19, (2011) 2125–2136. https://doi.org/10.1109/TASL.2011.2114881. [CrossRef] [Google Scholar]
  31. T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America 102 (1997) 2892–2905. [CrossRef] [PubMed] [Google Scholar]
  32. M. Zilany, I. Bruce, L. Carney: Updated parameters and expanded simulation options for a model of the auditory periphery. Journal of the Acoustical Society of America 135 (2014) 283–286. https://doi.org/10.1121/1.420344. [CrossRef] [PubMed] [Google Scholar]
  33. L. Carney, T. Li, J. McDonough: Speech coding in the brain: Representation of vowel formants by midbrain neurons tuned to sound fluctuations. eNeuro 2 (2015) 1–12. https://doi.org/10.1523/ENEURO.0004-15.2015. [CrossRef] [PubMed] [Google Scholar]
  34. S. Verhulst, H. Bharadwaj, G. Mehraei, C. Shera, B. Shinn-Cunningham: Functional modeling of the human auditory brainstem response to broadband stimulation. Journal of the Acoustical Society of America 138 (2015) 1637–1659. https://doi.org/10.1121/1.4928305. [CrossRef] [PubMed] [Google Scholar]
  35. S. Verhulst, A. Altoè, V. Vasilkov: Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing Research 360 (2018) 55–75. https://doi.org/10.1016/j.heares.2017.12.018. [CrossRef] [PubMed] [Google Scholar]
  36. I. Bruce, Y. Erfani, M. Zilany: A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hearing Research 360 (2018) 40–54. https://doi.org/10.1016/j.heares.2017.12.016. [CrossRef] [PubMed] [Google Scholar]
  37. A. King, L. Varnet, C. Lorenzi: Accounting for masking of frequency modulation by amplitude modulation with the modulation filter-bank concept. Journal of the Acoustical Society of America 145 (2019) 2277–2293. https://doi.org/10.1121/1.5094344. [CrossRef] [PubMed] [Google Scholar]
  38. H. Relaño-Iborra, J. Zaar, T. Dau: A speech-based computational auditory signal processing and perception model. Journal of the Acoustical Society of America 146 (2019) 3306–3317. https://doi.org/10.1121/1.5129114. [CrossRef] [PubMed] [Google Scholar]
  39. A. Osses Vecchi, A. Kohlrausch: Perceptual similarity between piano notes: Simulations with a template-based perception model. Journal of the Acoustical Society of America 149 (2021) 3534–3552. https://doi.org/10.1121/10.0004818 [CrossRef] [PubMed] [Google Scholar]
  40. A. Gelfert: Strategies and trade-offs in model-building, in How to Do Science with Models: A Philosophical Primer, Springer International Publishing. 2016, 43–70. https://doi.org/10.1007/978-3-319-27954-1_3. [CrossRef] [Google Scholar]
  41. A. Osses Vecchi, S. Verhulst: Release note on version 1.2 of the Verhulst et al. 2018 model of the human auditory system: Calibration and reference simulations, 2019, arXiv:1912.10026. [Google Scholar]
  42. S. Verhulst, A. Altoè, V. Vasilkov, A. Osses: Verhulst et al. 2018 Auditory Model v1.2, 2020. https://github.com/HearingTechnology/Verhulstetal2018Model/releases/tag/v1.2. https://doi.org/10.5281/zenodo.3717800 [Google Scholar]
  43. P. Nelson, L. Carney: A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. Journal of the Acoustical Society of America 116 (2004) 2173–2186. [CrossRef] [PubMed] [Google Scholar]
  44. T. Dau, D. Püschel, A. Kohlrausch: A quantitative model of the effective signal processing in the auditory system. I. Model structure. Journal of the Acoustical Society of America 99 (1996) 3615–3622. https://doi.org/10.1121/1.414959. [CrossRef] [PubMed] [Google Scholar]
  45. J. Rosowski: The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. Journal of the Acoustical Society of America 90 (1991) 124–135. https://doi.org/10.1121/1.401306. [CrossRef] [PubMed] [Google Scholar]
  46. H. Møller, M. Sørensen, D. Hammershøi, C. Jensen: Head-related transfer functions of human subjects. Journal of the Audio Engineering Society 43 (1995) 300–321. [Google Scholar]
  47. S. Puria: Measurements of human middle ear forward and reverse acoustics: Implications for otoacoustic emissions. Journal of the Acoustical Society of America 113 (2003) 2773–2789. https://doi.org/10.1121/1.1564018. [CrossRef] [PubMed] [Google Scholar]
  48. R. Ibrahim, I. Bruce, Effects of peripheral tuning on the auditory nerve’s representation of speech envelope and temporal fine structure cues. In: Lopez-Poveda E., Palmer A., Meddis R., Eds. The Neurophysiological Bases of Auditory Perception, Springer, New York, NY, 2010, pp. 429–438. https://doi.org/10.1007/978-1-4419-5686-6 [CrossRef] [Google Scholar]
  49. R. Ibrahim: The role of temporal fine structure cues in speech perception, Ph.D. thesis. McMaster University, 2012. http://hdl.handle.net/11375/11980. [Google Scholar]
  50. S. Puria, W. Peake, J. Rosowski: Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. Journal of the Acoustical Society of America 101 (1997) 2754–2770. [CrossRef] [PubMed] [Google Scholar]
  51. J. Pascal, A. Bourgeade, M. Lagier, C. Legros: Linear and nonlinear model of the human middle ear. Journal of the Acoustical Society of America 104 (1998) 1509–1516. https://doi.org/10.1121/1.424363. [CrossRef] [PubMed] [Google Scholar]
  52. R. Goode, M. Killion, K. Nakamura, S. Nishihara: New knowledge about the function of the human middle ear: Development of an improved analog model. American Journal of Otolaryngology 15 (1994) 145–154. [CrossRef] [PubMed] [Google Scholar]
  53. C. Shera, J. Guinan, A. Oxenham: Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences 99 (2002) 3318–3323. https://doi.org/10.1073/pnas.032675099. [CrossRef] [PubMed] [Google Scholar]
  54. B. Glasberg, B. Moore: Derivation of auditory filter shapes from notched-noise data. Hearing Research 47 (1990) 103–138. https://doi.org/10.1016/0378-5955(90)90170-T. [CrossRef] [PubMed] [Google Scholar]
  55. M. Zilany, I. Bruce: Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery, Journal of the Acoustical Society of America 120 (2006) 1446–1466. https://doi.org/10.1121/1.2225512. [CrossRef] [PubMed] [Google Scholar]
  56. F. Rønne, T. Dau, J. Harte, C. Elberling: Modeling auditory evoked brainstem responses to transient stimuli. Journal of the Acoustical Society of America 131 (2012) 3903–3913. https://doi.org/10.1121/1.3699171. [CrossRef] [PubMed] [Google Scholar]
  57. I. Bruce, M. Sachs, E. Young: An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. Journal of the Acoustical Society of America 113 (2003) 369–388. https://doi.org/10.1121/1.1519544. [CrossRef] [PubMed] [Google Scholar]
  58. L. Westerman, R. Smith: A diffusion model of the transient response of the cochlear inner hair cell synapse. Journal of the Acoustical Society of America 83 (1988) 2266–2276. https://doi.org/10.1121/1.396357. [CrossRef] [PubMed] [Google Scholar]
  59. A. Altoè, V. Pulkki, S. Verhulst: Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves. Journal of the Acoustical Society of America 141 (2017) 4438–4451. https://doi.org/10.1121/1.4985193. [CrossRef] [PubMed] [Google Scholar]
  60. B. Moore: An Introduction to the Psychology of Hearing. 6th ed., Koninklijke Brill NV, 2013. [Google Scholar]
  61. A. Peterson, P. Heil: A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hearing Research 363 (2018) 1–27. https://doi.org/10.1016/j.heares.2017.09.005. [CrossRef] [PubMed] [Google Scholar]
  62. P. Majdak, R. Baumgartner, C. Jenny: Formation of three-dimensional auditory space, in The Technology of Binaural Understanding. Springer International Publishing, 2020, pp. 115–149. https://doi.org/10.1007/978-3-030-00386-9_5. [CrossRef] [Google Scholar]
  63. L. Carney: Supra-threshold hearing and fluctuation profiles: Implications for sensorineural and hidden hearing loss. Journal of the Association for Research in Otolaryngology 19 (2018) 331–352. https://doi.org/10.1007/s10162-018-0669-5. [CrossRef] [PubMed] [Google Scholar]
  64. G. Ashida, D. Tollin, J. Kretzberg: Physiological models of the lateral superior olive. PLoS Computational Biology 13 (2017) 1–50. https://doi.org/10.1371/journal.pcbi.1005903. [Google Scholar]
  65. B. Maxwell, V. Richards, L. Carney: Neural fluctuation cues for simultaneous notched-noise masking and profile-analysis tasks: Insights from model midbrain responses. Journal of the Acoustical Society of America 147 (2020) 3523–3537. https://doi.org/10.1121/10.0001226. [CrossRef] [PubMed] [Google Scholar]
  66. L. Carney: University of Rochester: Envisioning Auditory Responses (UR EAR 2020b), 2020. https://osf.io/6bsnt/. [Google Scholar]
  67. W. Gerstner, W. Kistler, R. Naud, L. Paninski: Variability of spike trains and neural codes, in Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, 2014. Chap. 7. https://doi.org/10.1017/CBO9781107447615. [CrossRef] [Google Scholar]
  68. A. Kohlrausch, R. Fassel, T. Dau: The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. Journal of the Acoustical Society of America 108 (2000) 723–734. https://doi.org/10.1121/1.429605. [CrossRef] [PubMed] [Google Scholar]
  69. J. Verhey, T. Dau, B. Kollmeier: Within-channel cues in comodulation masking release (CMR): experiments and model predictions using a modulation-filterbank model. Journal of the Acoustical Society of America 106 (1999) 2733–2745. https://doi.org/10.1121/1.428101. [CrossRef] [PubMed] [Google Scholar]
  70. S. Ewert, J. Verhey, T. Dau: Spectro-temporal processing in the envelope-frequency domain. Journal of the Acoustical Society of America 112 (2002) 2921–2931. https://doi.org/10.1121/1.1515735. [CrossRef] [PubMed] [Google Scholar]
  71. D. Greenwood: A cochlear frequency position function for several species–29 years later, Journal of the Acoustical Society of America 87 (1990) 2592–2605. https://doi.org/10.1121/1.399052. [CrossRef] [PubMed] [Google Scholar]
  72. N. Wallaert, L. Varnet, B. Moore, C. Lorenzi: Sensorineural hearing loss impairs sensitivity but spares temporal integration for detection of frequency modulation. Journal of the Acoustical Society of America 144 (2018) 720–733. https://doi.org/10.1121/1.5049364. [CrossRef] [PubMed] [Google Scholar]
  73. M.C. Liberman: Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America 63 (1978) 442–455. https://doi.org/10.1121/1.381736. [CrossRef] [PubMed] [Google Scholar]
  74. M.C. Liberman, L. Dodds, S. Pierce: Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy, he. Journal of Comparative Neurology 301 (1990) 443–460. https://doi.org/10.1002/cne.903010309. [CrossRef] [PubMed] [Google Scholar]
  75. M. Zilany, I. Bruce, P. Nelson, L. Carney: A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics. Journal of the Acoustical Society of America 126 (2009) 2390–2412. https://doi.org/10.1121/1.3238250. [CrossRef] [PubMed] [Google Scholar]
  76. T. Ren: Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proceedings of the National Academy of Sciences 99 (2002) 17101–17106. https://doi.org/10.1073/pnas.262663699. [CrossRef] [PubMed] [Google Scholar]
  77. M. Jepsen, S. Ewert, T. Dau: A computational model of human auditory signal processing and perception. Journal of the Acoustical Society of America 124 (2008) 422–438. https://doi.org/10.1121/1.2924135. [CrossRef] [PubMed] [Google Scholar]
  78. A. Recio, W. Rhode: Basilar membrane responses to broadband stimuli. Journal of the Acoustical Society of America 108 (2000) 2281–2298. https://doi.org/10.1121/1.1318898. [CrossRef] [PubMed] [Google Scholar]
  79. L. Robles, M. Ruggero: Mechanics of the mammalian cochlea. Physiological Reviews 81 (2001) 1305–1352. https://doi.org/10.1152/physrev.2001.81.3.1305. [CrossRef] [PubMed] [Google Scholar]
  80. D. McFadden, M. Yama: Upward shifts in the masking pattern with increasing masker intensity. Journal of the Acoustical Society of America 74 (1983) 1185–1189. https://doi.org/10.1121/1.390042. [CrossRef] [PubMed] [Google Scholar]
  81. B. Moore, B. Glasberg: Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane at 1 and 2 kHz. Hearing Research 175 (2003) 66–74. https://doi.org/10.1016/S0378-5955(02)00711-6. [CrossRef] [PubMed] [Google Scholar]
  82. A. Palmer, I. Russell: Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research 24 (1986) 1–15. https://doi.org/10.1016/0378-5955(86)90002-X. [CrossRef] [PubMed] [Google Scholar]
  83. E. Lopez-Poveda, A. Eustaquio-Martín: A biophysical model of the inner hair cell: The contribution of potassium currents to peripheral auditory compression. Journal of the Association for Research in Otolaryngology 7 (2006) 218–235. https://doi.org/10.1007/s10162-006-0037-8. [CrossRef] [PubMed] [Google Scholar]
  84. J. Antoni: Orthogonal-like fractional-octave-band filters. Journal of the Acoustical Society of America 127 (2010) 884–895. https://doi.org/10.1121/1.3273888. [CrossRef] [PubMed] [Google Scholar]
  85. A. Altoè, V. Pulkki, S. Verhulst: Transmission line cochlear models: Improved accuracy and efficiency. Journal of the Acoustical Society of America 136 (2014) EL302–EL308. https://doi.org/10.1121/1.4896416. [CrossRef] [PubMed] [Google Scholar]
  86. M. Ruggero, N. Rich, A. Recio, S.S. Narayan, L. Robles: Basilar-membrane responses to tones at the base of the chinchilla cochlea. Journal of the Acoustical Society of America 101 (1997) 2151–2163. https://doi.org/10.1121/1.418265. [CrossRef] [PubMed] [Google Scholar]
  87. R. Smith, M. Brachman: Operating range and maximum response of single auditory nerve fibers. Brain Research 184 (1980) 499–505. https://doi.org/10.1016/0006-8993(80)90817-3. [CrossRef] [PubMed] [Google Scholar]
  88. J. Klug, L. Schmors, G. Ashida, M. Dietz: Neural rate difference model can account for lateralization of high-frequency stimuli. Journal of the Acoustical Society of America 148 (2020) 678–691. https://doi.org/10.1121/10.0001602. [CrossRef] [PubMed] [Google Scholar]
  89. M. Rahman, B. Willmore, A. King, N. Harper: Simple transformations capture auditory input to cortex. Proceedings of the National Academy of Sciences 117 (2020) 28442–28451. https://doi.org/10.1073/pnas.1922033117. [CrossRef] [PubMed] [Google Scholar]
  90. L. Deng, C.D. Geisler: Responses of auditory-nerve fibers to nasal consonant-vowel syllables. Journal of the Acoustical Society of America 82 (1987) 1977–1988. https://doi.org/10.1121/1.395642. [CrossRef] [PubMed] [Google Scholar]
  91. L. Carney, D. Kim, S. Kuwada: Speech coding in the midbrain: effects of sensorineural hearing loss. In: P. van Dijk, D. Baskent, E. Gaudrain, de Kleine E., Wagner A., Lanting C., Eds. Physiology, psychoacoustics and cognition in normal and impaired hearing, Springer International Publishing, 2016, pp. 427–435. https://doi.org/10.1007/978-3-319-25474-6. [CrossRef] [PubMed] [Google Scholar]
  92. B.S. Krishna, M. Semple: Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology 84 (2000) 255–273. https://doi.org/10.1152/jn.2000.84.1.255. [CrossRef] [PubMed] [Google Scholar]
  93. D. Purcell, M.S. John: Evaluating the modulation transfer function of auditory steady state responses in the 65 Hz to 120 Hz range. Ear and Hearing 31 (2010) 667–678. https://doi.org/10.1097/AUD.0b013e3181e0863b. [CrossRef] [PubMed] [Google Scholar]
  94. D. Schwartz, M. Morris, J. Spydell, C. Ten Brink, M. Grim, J. Schwartz: Influence of click polarity on the brain-stem auditory evoked response (BAER) revisited. Ear and Hearing 77 (1990) 445–457. https://doi.org/10.1016/0168-5597(90)90005-X. [Google Scholar]
  95. T. Picton: Auditory brainstem responses: peaks along the way, in Human Auditory Evoked Potentials, Chap. 8, Plural Publishing. 2011, 213–245. [Google Scholar]
  96. E. Laukli, R. Burkard: Calibration/standardization of short-duration stimuli. Seminars in Hearing 36 (2015) 3–10. https://doi.org/10.1055/s-0034-1396923. [CrossRef] [Google Scholar]
  97. J. Undurraga, A. van Wieringen, R. Carlyon, O. Macherey, J. Wouters: Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites. Hearing Research 269 (2010) 146–161. https://doi.org/10.1016/j.heares.2010.06.017. [CrossRef] [PubMed] [Google Scholar]
  98. D. Ramekers, H. Versnel, S. Strahl, E. Smeets, S. Klis, W. Grolman: Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. Journal of the Association for Research in Otolaryngology 15 (2014) 187–202. https://doi.org/10.1007/s10162-013-0440-x. [CrossRef] [PubMed] [Google Scholar]
  99. F. Drakopoulos, D. Baby, S. Verhulst: A convolutional neural-network framework for modelling auditory sensory cells and synapses. Communications Biology 4 (2021) 827. https://doi.org/10.1038/s42003-021-02341-5. [CrossRef] [PubMed] [Google Scholar]
  100. D. Baby, A. Van Den Broucke, S. Verhulst: A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications. Nature Machine Intelligence 3 (2020) 134–143. https://doi.org/10.1038/s42256-020-00286-8. [Google Scholar]
  101. A. Nagathil, F. Göbel, A. Nelus, I. Bruce: Computationally efficient DNN-based approximation of an auditory model for applications in speech processing, in Proc. of ICASSP. 2021, 301–305. https://doi.org/10.1109/ICASSP39728.2021.9413993. [Google Scholar]
  102. F. Bianchi, L. Carney, T. Dau, S. Santurette: Effects of musical training and hearing loss on fundamental frequency discrimination and temporal fine structure processing: Psychophysics and modeling. Journal of the Association for Research in Otolaryngology 20 (2019) 263–277. https://doi.org/10.1007/s10162-018-00710-2. [CrossRef] [PubMed] [Google Scholar]
  103. A. Moncada-Torres, A. van Wieringen, I. Bruce, J. Wouters: Predicting phoneme and word recognition in noise using a computational model of the auditory periphery. Journal of the Acoustical Society of America 141 (2017) 300–312. https://doi.org/10.1121/1.4973569. [CrossRef] [PubMed] [Google Scholar]
  104. S. Verhulst, A. Jagadeesh, M. Mauermann, F. Ernst: Individual differences in auditory brainstem response wave characteristics: Relations to different aspects of peripheral hearing loss. Trends in Hearing 20 (2016) 1–20. https://doi.org/10.1177/2331216516672186. [CrossRef] [Google Scholar]
  105. S. Verhulst, F. Ernst, M. Garrett, V. Vasilkov: Supra-threshold psychoacoustics and envelope-following response relations: normal-hearing, synaptopathy and cochlear gain loss. Acta Acustica united with Acustica 104 (2018) 800–803. [CrossRef] [Google Scholar]
  106. A. Osses Vecchi, F. Ernst, S. Verhulst: Hearing-impaired sound perception: What can we learn from a biophysical model of the human auditory periphery? In: Ochmann M., Vorländer M., Fels J., Eds. International Congress on Acoustics. 2019, 678–685. https://doi.org/10.18154/rwth-conv-239764. [Google Scholar]
  107. S. Jørgensen, T. Dau: Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. Journal of the Acoustical Society of America 130 (2011) 1475–1487. https://doi.org/10.1121/1.3621502. [CrossRef] [PubMed] [Google Scholar]
  108. M. Jepsen, T. Dau: Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss. Journal of the Acoustical Society of America 129 (2011) 262–281. https://doi.org/10.1121/1.3518768. [CrossRef] [PubMed] [Google Scholar]
  109. S. Ewert, T. Dau: External and internal limitations in amplitude-modulation processing. Journal of the Acoustical Society of America 116 (2004) 478–490. https://doi.org/10.1121/1.1737399. [CrossRef] [PubMed] [Google Scholar]
  110. N. Wallaert, B. Moore, S. Ewert, C. Lorenzi: Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation. Journal of the Acoustical Society of America 141 (2017) 971–980. https://doi.org/10.1121/1.4976080. [CrossRef] [PubMed] [Google Scholar]
  111. R. Huber, B. Kollmeier: PEMO-Q—A new method for objective audio quality assessment using a model of auditory perception. IEEE Transactions on Audio, Speech, and Language Processing 14, 6 (2006) 1902–1911. [CrossRef] [Google Scholar]
  112. T. Biberger, J.H. Flessner, R. Huber, S. Ewert: An objective audio quality measure based on power and envelope power cues. Journal of the Audio Engineering Society 66 (2018) 578–593. https://doi.org/10.17743/jaes.2018.0031. [CrossRef] [Google Scholar]
  113. T. Biberger, GPSMq, 2019. Available at https://gitlab.uni-oldenburg.de/kuxo2262/GPSMq, last accessed February 27, 2022. [Google Scholar]
  114. I. Bruce: Physiologically based predictors of speech intelligibility. Acoustics Today 131 (2017) 28–35. [Google Scholar]
  115. M.R. Schädler, A. Warzybok, S. Hochmuth, B. Kollmeier: Matrix sentence intelligibility prediction using an automatic speech recognition system. International Journal of Audiology 54 (2015) 100–107. https://doi.org/10.3109/14992027.2015.1061708. [CrossRef] [PubMed] [Google Scholar]
  116. J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model structure. Journal of the Acoustical Society of America 110 (2001) 1074–1088. https://doi.org/10.1121/1.1383297. [CrossRef] [PubMed] [Google Scholar]
  117. J. van Dorp, D. de Vries, A. Lindau: Deriving content-specific measures of room acoustic perception using a binaural, nonlinear auditory model. Journal of the Acoustical Society of America 133 (2013) 1572–1585. https://doi.org/10.1121/1.4789357. [CrossRef] [PubMed] [Google Scholar]
  118. A. Osses Vecchi, A. Kohlrausch, W. Lachenmayr, E. Mommertz: Predicting the perceived reverberation in different room acoustic environments using a binaural model. Journal of the Acoustical Society of America 141 (2017) EL381–EL387. https://doi.org/10.1121/1.4979853. [CrossRef] [PubMed] [Google Scholar]
  119. A. Osses Vecchi: Binaural auditory model RAA. Available at https://github.com/aosses-tue/binaural-auditory-model-RAA, last accessed February 27, 2022 (2017). https://doi.org/10.5281/zenodo.3596007. [Google Scholar]
  120. A. Prokopiou, A. Moncada-Torres, J. Wouters, T. Francart: Functional modelling of interaural time difference discrimination in acoustical and electrical hearing. Journal of Neural Engineering 14 (2017) 046021. https://doi.org/10.1088/1741-2552/aa7075. [CrossRef] [PubMed] [Google Scholar]
  121. R. Baumgartner, P. Majdak, B. Laback: Modeling the effects of sensorineural hearing loss on sound localization in the median plane. Trends in Hearing 20 (2016) 1–11. https://doi.org/10.1177/2331216516662003. [Google Scholar]
  122. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. Journal of the Acoustical Society of America 136 (2014) 791–802. https://doi.org/10.1121/1.4887447. [CrossRef] [PubMed] [Google Scholar]
  123. G. McLachlan, P. Majdak, J. Reijniers, H. Peremans: Towards modelling active sound localisation based on Bayesian inference in a static environment. Acta Acustica 5 (2021) 45. https://doi.org/10.1051/aacus/2021039. [CrossRef] [EDP Sciences] [Google Scholar]
  124. E. Joosten, S. Shamma, C. Lorenzi, P. Neri: Dynamic reweighting of auditory modulation filters. PLOS Computational Biology 12 (2016) e1005019. https://doi.org/10.1371/journal.pcbi.1005019. [CrossRef] [PubMed] [Google Scholar]
  125. T. Dau, D. Püschel, A. Kohlrausch: A quantitative model of the effective signal processing in the auditory system. II. Simulations and measurements. Journal of the Acoustical Society of America 99 (1996) 3623–3631. [CrossRef] [PubMed] [Google Scholar]
  126. J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. Journal of the Acoustical Society of America 110, 2 (2001) 1105–1117. https://doi.org/10.1121/1.1383299. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.