Issue
Acta Acust.
Volume 6, 2022
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 20
Number of page(s) 17
DOI https://doi.org/10.1051/aacus/2022017
Published online 20 May 2022
  1. R. Plomp: Binaural and monaural speech intelligibility of connected discourse in reverberation as a function of azimuth of a single competing sound source (speech or noise). Acta Acustica united with Acustica 34 (1976) 200–211. [Google Scholar]
  2. M.L. Hawley, R.Y. Litovsky, J.F. Culling: The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. Journal of the Acoustical Society of America 115, 2 (2004) 833–843. [CrossRef] [PubMed] [Google Scholar]
  3. A.W. Bronkhorst, R. Plomp: The effect of head-induced interaural time and level differences on speech intelligibility in noise. Journal of the Acoustical Society of America 83, 4 (1988) 1508–1516. [CrossRef] [PubMed] [Google Scholar]
  4. N.I. Durlach: Binaural signal detection: Equalization and cancellation theory. In: J. Tobias, Ed. Foundations of Modern Auditory Theory, Vol. II, New York: Academic, 1972: 371–462. [Google Scholar]
  5. J.F. Culling, M. Lavandier: Binaural unmasking and spatial release from masking. In: R.Y. Litovsky, M.J. Goupell, A.N. Popper, R.R. Fay, Eds. Binaural Hearing, Vol. 73 of Springer Handbook of Auditory Research, Switzerland: Springer Nature, 2021: 209–241. [CrossRef] [Google Scholar]
  6. J.F. Culling, K.I. Hodder, C.Y. Toh: Effects of reverberation on perceptual segregation of competing voices. Journal of the Acoustical Society of America 114, 5 (2003) 2871–2876. [CrossRef] [Google Scholar]
  7. R. Beutelmann, T. Brand: Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 120, 1 (2006) 331–342. [CrossRef] [PubMed] [Google Scholar]
  8. M. Lavandier, J.F. Culling: Speech segregation in rooms: Monaural, binaural, and interacting effects of reverberation on target and interferer. Journal of the Acoustical Society of America 123, 4 (2008) 2237–2248. [CrossRef] [PubMed] [Google Scholar]
  9. M. Lavandier, V. Best: Modeling binaural speech understanding in complex situations: In: J. Blauert, J. Braasch, Eds. The technology of binaural understanding, Switzerland: Springer Nature, 2020: 547–578. [CrossRef] [Google Scholar]
  10. M. Lavandier, J.F. Culling: Prediction of binaural speech intelligibility against noise in rooms. Journal of the Acoustical Society of America 127, 1 (2010) 387–399. [CrossRef] [PubMed] [Google Scholar]
  11. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.x: A toolbox for reproducible research in auditory modeling. Acta Acustica 6 (2022) 19. [CrossRef] [EDP Sciences] [Google Scholar]
  12. R. Wan, N.I. Durlach, H.S. Colburn: Application of an extended equalization- cancellation model to speech intelligibility with spatially distributed maskers. Journal of the Acoustical Society of America 128, 6 (2010) 3678–3690. [CrossRef] [PubMed] [Google Scholar]
  13. H. Levitt, L.R. Rabiner: Predicting binaural gain in intelligibility and release from masking for speech. Journal of the Acoustical Society of America 424 (1967) 820–829. [CrossRef] [PubMed] [Google Scholar]
  14. P.M. Zurek: Binaural advantages and directional effects in speech intelligibility. In: G. Studebaker, I. Hochberg, Eds. Acoustical factors affecting hearing aid performance, Needham Heights, MA: Allyn and Bacon, 1993: 255–276. [Google Scholar]
  15. ANSI S3.5: Methods for calculation of the speech intelligibility index, American National Standards Institute, New York. 1997. [Google Scholar]
  16. J.F. Culling, M.L. Hawley, R.Y. Litovsky: The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. Journal of the Acoustical Society of America 116, 2 (2004) 1057–1065. [CrossRef] [PubMed] [Google Scholar]
  17. J.F. Culling, M.L. Hawley, R.Y. Litovsky: Erratum: The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. Journal of the Acoustical Society of America 118, 1 (2005) 552. [CrossRef] [Google Scholar]
  18. N.I. Durlach: Equalization and cancellation theory of binaural masking-level differences. Journal of the Acoustical Society of America 35, 8 (1963) 1206–1218. [CrossRef] [Google Scholar]
  19. S. Jelfs, J.F. Culling, M. Lavandier: Revision and validation of a binaural model for speech intelligibility in noise. Hearing Research 275 (2011) 96–104. [CrossRef] [PubMed] [Google Scholar]
  20. M. Lavandier, S. Jelfs, J.F. Culling, A.J. Watkins, A.P. Raimond, S.J. Makin: Binaural prediction of speech intelligibility in reverberant rooms with multiple noise sources. Journal of the Acoustical Society of America 131, 1 (2012) 218–231. [CrossRef] [PubMed] [Google Scholar]
  21. K.S. Rhebergen, N.J. Versfeld: A speech intelligibility index-based approach to predict the speech reception threshold for sentences in fluctuating noise for normal-hearing listeners. Journal of the Acoustical Society of America 117, 4 (2005) 2181–2192. [CrossRef] [PubMed] [Google Scholar]
  22. J.F. Culling, S. Jelfs, M. Lavandier: An alternative perspective on multi-channel reproduction, in Reproduced Sound 2010, Proceedings of the Institute of Acoustics. 2010. [Google Scholar]
  23. J.F. Culling, M. Lavandier, S. Jelfs: Predicting binaural speech intelligibility in architectural acoustics. In: J. Blauert, Ed. The technology of binaural listening, Berlin-Heidelberg-New York NY: Springer, 2013: 427–447. [CrossRef] [Google Scholar]
  24. T. Leclère, D. Thery, M. Lavandier, J.F. Culling: Speech intelligibility for target and masker with different spectra. In: P. van Dijk, D. Başkent, E. Gaudrain, E. de Kleine, A. Wagner, C. Lanting (Eds.), Physiology, psychoacoustics and cognition in normal and impaired hearing, Vol. 894, Springer, Advances in Experimental Medicine and Biology, 2016: 257–266. [CrossRef] [PubMed] [Google Scholar]
  25. J.M. Festen, R. Plomp: Effects of fluctuating noise and interfering speech on the speech- reception threshold for impaired and normal hearing. Journal of the Acoustical Society of America 88, 4 (1990) 1725–1736. [CrossRef] [PubMed] [Google Scholar]
  26. A.W. Bronkhorst, R. Plomp: Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. Journal of the Acoustical Society of America 92, 6 (1992) 3132–3139. [CrossRef] [PubMed] [Google Scholar]
  27. M. Cooke: A glimpsing model of speech perception in noise. Journal of the Acoustical Society of America 119, 3 (2006) 1562–1573. [CrossRef] [PubMed] [Google Scholar]
  28. A.W. Bronkhorst, R. Plomp: A clinical test for the assessment of binaural speech perception in noise. Audiology 29 (1990) 275–285. [CrossRef] [Google Scholar]
  29. E.L.J. George, J.M. Festen, T. Houtgast: The combined effects of reverberation and nonstationary noise on sentence intelligibility. Journal of the Acoustical Society of America 124, 2 (2008) 1269–1277. [CrossRef] [PubMed] [Google Scholar]
  30. R. Beutelmann, T. Brand, B. Kollmeier: Revision, extension, and evaluation of a binaural speech intelligibility model. Journal of the Acoustical Society of America 127, 4 (2010) 2479–2497. [CrossRef] [PubMed] [Google Scholar]
  31. B. Collin, M. Lavandier: Binaural speech intelligibility in rooms with variations in spatial location of sources and modulation depth of noise interferers. Journal of the Acoustical Society of America 134, 2 (2013) 1146–1159. [CrossRef] [PubMed] [Google Scholar]
  32. T. Vicente, M. Lavandier: Further validation of a binaural model predicting speech intelligibility against envelope-modulated noises. Hearing Research 390 (2020) 107937. [CrossRef] [PubMed] [Google Scholar]
  33. J.F. Culling, Q. Summerfield: Measurements of the binaural temporal window using a detection task. Journal of the Acoustical Society of America 103, 6 (1998) 3540–3553. [CrossRef] [Google Scholar]
  34. D.W. Grantham, F.L. Wightman: Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. Journal of the Acoustical Society of America 65, 6 (1979) 1509–1517. [CrossRef] [PubMed] [Google Scholar]
  35. J.F. Culling, E.R. Mansell: Speech intelligibility among modulated and spatially distributed noise sources. Journal of the Acoustical Society of America 133, 4 (2013) 2254–2261. [CrossRef] [PubMed] [Google Scholar]
  36. C.F. Hauth, T. Brand: Modeling sluggishness in binaural unmasking of speech for maskers with time-varying interaural phase differences. Trends in Hearing 22 (2018) 1–10. [Google Scholar]
  37. J. Cubick, J.M. Buchholz, V. Best, M. Lavandier, T. Dau: Listening through hearing aids affects spatial perception and speech intelligibility in normal-hearing listeners. Journal of the Acoustical Society of America 144, 5 (2018) 2896–2905. [CrossRef] [PubMed] [Google Scholar]
  38. T. Houtgast, H.J.M. Steeneken: A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. Journal of the Acoustical Society of America 77, 3 (1985) 1069–1077. [CrossRef] [Google Scholar]
  39. M. Lavandier, J.F. Culling: Speech segregation in rooms: Effects of reverberation on both target and interferer. Journal of the Acoustical Society of America 122, 3 (2007) 1713–1723. [CrossRef] [PubMed] [Google Scholar]
  40. J.P. Moncur, D. Dirks: Binaural and monaural speech intelligibility in reverberation. Journal of Speech and Hearing Research 10 (1967) 186–195. [CrossRef] [PubMed] [Google Scholar]
  41. A.K. Nábĕlek, P.K. Robinson: Monaural and binaural speech perception in reverberation for listeners of various ages. Journal of the Acoustical Society of America 71, 5 (1982) 1242–1248. [CrossRef] [PubMed] [Google Scholar]
  42. T. Leclère, M. Lavandier, J.F. Culling: Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking and binaural de-reverberation. Journal of the Acoustical Society of America 137, 6 (2015) 3335–3345. [CrossRef] [PubMed] [Google Scholar]
  43. J.S. Bradley, H. Sato, M. Picard: On the importance of early reflections for speech in rooms. Journal of the Acoustical Society of America 113, 6 (2003) 3233–3244. [CrossRef] [Google Scholar]
  44. J.P.A. Lochner, J.F. Burger: The influence of reflections on auditorium acoustics. Journal of Sound and Vibration 1, 4 (1964) 426–454. [CrossRef] [Google Scholar]
  45. J.S. Bradley: Predictors of speech intelligibility in rooms. Journal of the Acoustical Society of America 80, 3 (1986) 837–845. [CrossRef] [PubMed] [Google Scholar]
  46. J.S. Bradley, R.D. Reich, S.G. Norcross: On the combined effects of signal-to-noise ratio and room acoustics on speech intelligibility. Journal of the Acoustical Society of America 106, 4 (1999) 1820–1828. [CrossRef] [PubMed] [Google Scholar]
  47. G.A. Soulodre, N. Popplewell, J.S. Bradley: Combined effects of early reflections and background noise on speech intelligibility. Journal of Sound and Vibration 135, 1 (1989) 123–133. [CrossRef] [Google Scholar]
  48. I. Arweiler, J.M. Buchholz: The influence of spectral characteristics of early reflections on speech intelligibility. Journal of the Acoustical Society of America 130, 2 (2011) 996–1005. [CrossRef] [PubMed] [Google Scholar]
  49. N. Roman, J. Woodruff: Speech intelligibility in reverberation with ideal binary masking: Effects of early reflections and signal-to-noise ratio threshold. Journal of the Acoustical Society of America 133, 3 (2013) 1707–1717. [CrossRef] [PubMed] [Google Scholar]
  50. A. Warzybok, J. Rennies, T. Brand, S. Doclo, B. Kollmeier: Effects of spatial and temporal integration of a single early reflection on speech intelligibility. Journal of the Acoustical Society of America 133, 1 (2013) 269–282. [CrossRef] [PubMed] [Google Scholar]
  51. A. Lindau, L. Kosanke, S. Weinzierl: Perceptual evaluation of model- and signal-based predictors of the mixing time in binaural room impulse responses. Journal of the Audio Engineering Society 60, 11 (2012) 887–898. [Google Scholar]
  52. O. Kokabi, F. Brinkmann, S. Weinzierl: Segmentation of binaural room impulse responses for speech intelligibility prediction. Journal of the Acoustical Society of America 144, 5 (2018) 2793–2800. [CrossRef] [PubMed] [Google Scholar]
  53. J. Rennies, A. Warzybok, T. Brand, B. Kollmeier: Measurement and prediction of binaural-temporal integration of speech reflections. Trends in Hearing 23 (2019) 2331216519854267. [PubMed] [Google Scholar]
  54. A.J. Watkins: Perceptual compensation for effects of reverberation in speech identification. Journal of the Acoustical Society of America 118, 1 (2005) 249–262. [CrossRef] [PubMed] [Google Scholar]
  55. E. Brandewie, P. Zahorik: Prior listening in rooms improves speech intelligibility. Journal of the Acoustical Society of America 128, 1 (2010) 291–299. [CrossRef] [PubMed] [Google Scholar]
  56. V. Best, E.R. Thompson, C.R. Mason, G. Kidd: An energetic limit on spatial release from masking. Journal of the Association for Research in Otolaryngology 14, 4 (2013) 603–610. [CrossRef] [PubMed] [Google Scholar]
  57. B. Rana, J.M. Buchholz: Effect of audibility on better-ear glimpsing as a function of frequency in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 143 (2018) 2195–2206. [CrossRef] [PubMed] [Google Scholar]
  58. S. Santurette, T. Dau: Relating binaural pitch perception to the individual listener’s auditory profile. Journal of the Acoustical Society of America 131, 4 (2012) 2968–2986. [CrossRef] [PubMed] [Google Scholar]
  59. H. Glyde, L. Hickson, S. Cameron, H. Dillon: Problems hearing in noise in older adults: a review of spatial processing disorder. Trends in Amplification 15, 3 (2011) 116–126. [CrossRef] [PubMed] [Google Scholar]
  60. T. Vicente, M. Lavandier, J.M. Buchholz: A binaural model implementing an internal noise to predict the effect of hearing impairment on speech intelligibility in non-stationary noises. Journal of the Acoustical Society of America 148, 5 (2020) 3305–3317. [CrossRef] [PubMed] [Google Scholar]
  61. B.C.J. Moore, B.R. Glasberg: A revised model of loudness perception applied to cochlear hearing loss. Hearing Research 188 (2004) 70–88. [CrossRef] [PubMed] [Google Scholar]
  62. I. Pieper, M. Mauermann, D. Oetting, B. Kollmeier, S.D. Ewert: Physiologically motivated individual loudness model for normal hearing and hearing impaired listeners. Journal of the Acoustical Society of America 144, 2 (2018) 917–930. [CrossRef] [PubMed] [Google Scholar]
  63. L.R. Bernstein, C. Trahiotis: Binaural signal detection, overall masking level, and masker interaural correlation: Revisiting the internal noise hypothesis, Journal of the Acoustical Society of America 124, 6 (2008) 3850–3860. [CrossRef] [PubMed] [Google Scholar]
  64. P.A. Wasiuk, M. Lavandier, E. Buss, J. Oleson, L. Calandruccio: The effect of fundamental frequency contour similarity on multi-talker listening in older and younger adults. Journal of the Acoustical Society of America 148, 6 (2020) 3527–3543. [CrossRef] [PubMed] [Google Scholar]
  65. T. Vicente, M. Lavandier, J.M. Buchholz: Modelling binaural unmasking and the intelligibility of speech in noise and reverberation for normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 150, 5 (2021) 3275–3287. [CrossRef] [PubMed] [Google Scholar]
  66. M. Lavandier, C.R. Mason, L.S. Baltzell, V. Best: Individual differences in speech intelligibility at a cocktail party: a modelling perspective. Journal of the Acoustical Society of America 150, 2 (2021) 1076–1087. [CrossRef] [PubMed] [Google Scholar]
  67. G. Kidd, H.S. Colburn: Informational masking in speech recognition. In: J. Middlebrooks, J. Simon, A.N. Popper, R.R. Fay, Eds. The Auditory System at the Cocktail Party, Springer Handbook of Auditory Research, Cham: Springer, 2017: 75–109. [CrossRef] [Google Scholar]
  68. A. de Cheveigné, S. McAdams, J. Laroche, M. Rosenberg: Identification of concurrent harmonic and inharmonic vowels: A test of the theory of harmonic cancellation and enhancement. Journal of the Acoustical Society of America 97, 6 (1995) 3736–3748. [CrossRef] [PubMed] [Google Scholar]
  69. K. Steinmetzger, S. Rosen: The role of periodicity in perceiving speech in quiet and in background noise. Journal of the Acoustical Society of America 138, 6 (2015) 3586–3599. [CrossRef] [PubMed] [Google Scholar]
  70. M.L.D. Deroche, J.F. Culling, M. Chatterjee, C.J. Limb: Speech recognition against harmonic and inharmonic complexes: Spectral dips and periodicity. Journal of the Acoustical Society of America 135, 5 (2014) 2873–2884. [CrossRef] [PubMed] [Google Scholar]
  71. A. de Cheveigné, S. McAdams, C.M.H. Marin: Concurrent vowel identification II. Effects of phase, harmonicity, and task. Journal of the Acoustical Society of America 101, 5 (1997) 2848–2856. [CrossRef] [Google Scholar]
  72. T. Leclère, M. Lavandier, M.L.D. Deroche: The intelligibility of speech in a harmonic masker varying in fundamental frequency contour, broadband temporal envelope, and spatial location. Hearing Research 350 (2017) 1–10. [CrossRef] [PubMed] [Google Scholar]
  73. M.A. Stone, C. Fiillgrabe, B.C.J. Moore: Notionally steady background noise acts primarily as a modulation masker of speech. Journal of the Acoustical Society of America 132, 1 (2012) 317–326. [CrossRef] [PubMed] [Google Scholar]
  74. M.A. Stone, C. Füllgrabe, R.C. Mackinnon, B.C.J. Moore: The importance for speech intelligibility of random fluctuations in steady background noise. Journal of the Acoustical Society of America 130, 5 (2011) 2874–2881. [CrossRef] [PubMed] [Google Scholar]
  75. K. Steinmetzger, J. Zaar, H. Relaño-Iborra, S. Rosen, T. Dau: Predicting the effects of periodicity on the intelligibility of masked speech: An evaluation of different modelling approaches and their limitations. Journal of the Acoustical Society of America 146, 4 (2019) 2562–2576. [CrossRef] [PubMed] [Google Scholar]
  76. L. Prud’homme, M. Lavandier, V. Best: A harmonic-cancellation-based model to predict speech intelligibility against a harmonic masker. Journal of the Acoustical Society of America 148, 5 (2020) 3246–3254. [CrossRef] [PubMed] [Google Scholar]
  77. J.F. Culling, M.A. Stone: Energetic masking and masking release. In: J. Middlebrooks, J. Simon, A.N. Popper, R.R. Fay, Eds. The Auditory System at the Cocktail Party, Vol. 60, Springer Handbook of Auditory Research, Cham: Springer, 2017: 41–73. [CrossRef] [Google Scholar]
  78. L.S. Baltzell, J. Swaminathan, A. Cho, M. Lavandier, V. Best: Binaural sensitivity and release from speech-on-speech masking in listeners with and without hearing loss. Journal of the Acoustical Society of America 147, 3 (2020) 1546–1561. [CrossRef] [PubMed] [Google Scholar]
  79. K.D. Kryter: Methods for the calculation and use of the Articulation Index. Journal of the Acoustical Society of America 34, 11 (1962) 1689–1697. [CrossRef] [Google Scholar]
  80. The AMT Team: The auditory modeling toolbox full package (version 1.1.0) [code]. (2021). https://sourceforge.net/projects/amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download. [Google Scholar]
  81. J. Rennies, T. Brand, B. Kollmeier: Prediction of the influence of reverberation on binaural speech intelligibility in noise and in quiet. Journal of the Acoustical Society of America 130, 5 (2011) 2999–3012. [CrossRef] [PubMed] [Google Scholar]
  82. J. Rennies, A. Warzybok, T. Brand, B. Kollmeier: Modeling the effects of a single reflection on binaural speech intelligibility. Journal of the Acoustical Society of America 135, 3 (2014) 1556–1567. [CrossRef] [PubMed] [Google Scholar]
  83. A. Bregman: Auditory scene analysis, the perceptual organization of sound, The MIT Press, Cambridge, MA, 1990. [CrossRef] [Google Scholar]
  84. B.C.J. Moore, H. Gockel: Properties of auditory stream formation, Philos. Trans. R. Soc. B. 367, 1591 (2012) 919–931. [CrossRef] [PubMed] [Google Scholar]
  85. M. David, M. Lavandier, N. Grimault, A.J. Oxenham: Sequential stream segregation of voiced and unvoiced speech sounds based on fundamental frequency. Hearing Research 344 (2017) 235–243. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.