Issue |
Acta Acust.
Volume 6, 2022
Topical Issue - Auditory models: from binaural processing to multimodal cognition
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/aacus/2022011 | |
Published online | 09 May 2022 |
- R. Frigg, S. Hartmann: Models in Science, in: E.N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, Fall, 2012. [Google Scholar]
- R. Meddis, E. Lopez-Poveda, R.R. Fay, A.N. Popper (Eds.): Computational Models of the Auditory System, Springer, US, 2010. https://doi.org/10.1007/978-1-4419-5934-8. [CrossRef] [Google Scholar]
- B.R. Jasny, G. Chin, L. Chong, S. Vignieri: Again, and again, and again …. Science 334, 6060 (2011) 1225. https://doi.org/10.1126/science.334.6060.1225. [CrossRef] [PubMed] [Google Scholar]
- P. Vandewalle, J. Kovacević, M. Vetterli: Reproducible research in signal processing: What, why, and how. IEEE Signal Processing Magazine 26, 3 (2009) 37–47. https://doi.org/10.1109/MSP.2009.932122. [CrossRef] [Google Scholar]
- T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America 102, 5 (1997) 2892–2905. [CrossRef] [PubMed] [Google Scholar]
- S. Ewert, T. Dau: Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America 108 (2000) 1181–1196. https://doi.org/10.1121/1.1288665. [CrossRef] [Google Scholar]
- S. Jørgensen, S.D. Ewert, T. Dau: A multi-resolution envelope-power based model for speech intelligibility. Journal of the Acoustical Society of America 134, 1 (2013) 436–446. https://doi.org/10.1121/1.4807563. [CrossRef] [PubMed] [Google Scholar]
- M. Schwab, N. Karrenbach, J. Claerbout: Making scientific computations reproducible. Computing in Science & Engineering 2, 6 (Nov. 2000) 61–67. https://doi.org/10.1109/5992.881708. [CrossRef] [Google Scholar]
- J.P. Mesirov, Accessible Reproducible Research, Science 327, 5964 (2010) 415–416. https://doi.org/10.1126/science.1179653. [CrossRef] [PubMed] [Google Scholar]
- R.D. Peng, Reproducible research in computational science, Science 334, 6060 (2011) 1226–1227. https://doi.org/10.1126/science.1213847. [CrossRef] [PubMed] [Google Scholar]
- J.F. Claerbout, M. Karrenbach: Electronic documents give reproducible research a new meaning, in: SEG Technical Program Expanded Abstracts 1992, Society of Exploration Geophysicists. 1992, pp. 601–604. https://doi.org/10.1190/1.1822162. [CrossRef] [Google Scholar]
- B.E. Peterson, M.D. Healy, P.M. Nadkarni, P.L. Miller, G.M. Shepherd: ModelDB: an environment for running and storing computational models and their results applied to neuroscience. Journal of the American Medical Informatics Association: JAMIA 3, 6 (1996) 389–398. https://doi.org/10.1136/jamia.1996.97084512. [CrossRef] [PubMed] [Google Scholar]
- T.M. Morse: Model sharing in computational neuroscience. Scholarpedia 2, 4 (2007) 3036. https://doi.org/10.4249/scholarpedia.3036. [CrossRef] [Google Scholar]
- R. Lyon: Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function. Journal of the Acoustical Society of America 130 (2011) 3893–3904. https://doi.org/10.1121/1.3658470. [CrossRef] [PubMed] [Google Scholar]
- L.H. Carney, T. Li, J.M. McDonough: Speech coding in the brain: representation of vowel formants by midbrain neurons tuned to sound fluctuations. eNeuro 2, 4 (2015). https://doi.org/10.1523/ENEURO.0004-15.2015. [CrossRef] [PubMed] [Google Scholar]
- S. Verhulst, A. Altoè, V. Vasilkov: Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing Research 360 (2018) 55–75. https://doi.org/10.1016/j.heares.2017.12.018. [CrossRef] [PubMed] [Google Scholar]
- I.C. Bruce, Y. Erfani, M.S.A. Zilany: A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hearing Research 360 (2018) 40–54. https://doi.org/10.1016/j.heares.2017.12.016. [CrossRef] [PubMed] [Google Scholar]
- P. Ru: Multiscale Multirate Spectro-Temporal Auditory Model. PhD Thesis, University of Maryland College Park, 2001. [Online]. Available: http://nsl.isr.umd.edu/downloads.html [Google Scholar]
- B.C.J. Moore: Development and current status of the “Cambridge” loudness models. Trends in Hearing 18 (2014) 2331216514550620. https://doi.org/10.1177/2331216514550620. [PubMed] [Google Scholar]
- D.J. Higham, N.J. Higham: MATLAB guide, vol. 150, Siam. [Google Scholar]
- J.W. Eaton, D. Bateman, S. Hauberg: GNU Octave Manual, Network Theory Ltd.. 2002. [Google Scholar]
- Malcolm Slaney: Auditory Toolbox: A MATLAB toolbox for auditory modeling work, Interval Research Corporation, Technical Report #1998-010. 1998. Accessed: Mar. 26, 2021. [Online]. Available: https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf [Google Scholar]
- R.D. Patterson, M.H. Allerhand, C. Giguère: Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. Journal of the Acoustical Society of America 98, 4 (1995) 1890–1894. https://doi.org/10.1121/1.414456. [CrossRef] [PubMed] [Google Scholar]
- A. Härmä, K. Palomäki: HUTear – A Free MATLAB Toolbox for Modeling of Human Auditory System. 1999, pp. 96–99. Accessed: Mar. 26, 2021. [Online]. Available: http://legacy.spa.aalto.fi/software/HUTear/. [Google Scholar]
- D.C. Mountain, D.A. Anderson, G.J. Bresnahan, S.G. Deligeorges, A.E. Hubbard, V. Vajda: EarLab: A modular approach to auditory simulation. Journal of Biomechanics 39 (2006) S434. https://doi.org/10.1016/S0021-9290(06)84771-8. [CrossRef] [Google Scholar]
- M. Rudnicki, O. Schoppe, M. Isik, F. Völk, W. Hemmert: Modeling auditory coding: from sound to spikes. Cell and Tissue Research 361, 1 (2015) 159–175. https://doi.org/10.1007/s00441-015-2202-z. [CrossRef] [PubMed] [Google Scholar]
- L.P. O’Mard: Development System for Auditory Modelling (DSAM), Centre for the Neural Basis of Hearing (CNBH), 2012. [Online]. Available: http://dsam.org.uk. [Google Scholar]
- B. Fontaine, D.F.M. Goodman, V. Benichoux, R. Brette: Brian hears: Online auditory processing using vectorization over channels. Frontiers in Neuroinformatics 5 (2011). https://doi.org/10.3389/fninf.2011.00009. [CrossRef] [Google Scholar]
- M. Stimberg, R. Brette, D.F. Goodman: Brian 2, an intuitive and efficient neural simulator. eLife 8 (2019) e47314. https://doi.org/10.7554/eLife.47314. [CrossRef] [PubMed] [Google Scholar]
- A. Gutkin: Eidos: an open-source auditory periphery modeling toolkit and evaluation of cross-lingual phonemic contrasts, in: Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL), Marseille, France, May 2020, pp. 9–20. Accessed: Mar. 26, 2021. [Online]. Available: https://www.aclweb.org/anthology/2020.sltu-1.2 [Google Scholar]
- T. Biberger, H. Schepker, F. Denk, S.D. Ewert: Instrumental quality predictions and analysis of auditory cues for algorithms in modern headphone technology. Trends in Hearing 25 (2021) 23312165211001220. https://doi.org/10.1177/23312165211001219. [CrossRef] [Google Scholar]
- Two!Ears Team: Two!Ears Auditory Model 1.5, Zenodo, 2018. https://doi.org/10.5281/zenodo.1458420. [Google Scholar]
- P. Søndergaard, P. Majdak: The Auditory Modeling Toolbox. In: J. Blauert (Ed.), The Technology of Binaural Listening, Berlin-Heidelberg, Germany: Springer, 2013, pp. 33–56. [CrossRef] [Google Scholar]
- M. Dietz, S.D. Ewert, V. Hohmann: Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication 53 (2011) 592–605. [CrossRef] [Google Scholar]
- H. Ziegelwanger, P. Majdak: Modeling the direction-continuous time-of-arrival in head-related transfer functions. Journal of the Acoustical Society of America 135, 3 (2014) 1278–1293. https://doi.org/10.1121/1.4863196. [CrossRef] [PubMed] [Google Scholar]
- E.A. Lopez-Poveda, R. Meddis: A human nonlinear cochlear filterbank. Journal of the Acoustical Society of America 110, 6 (2001) 3107–3118. [Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/11785812. [CrossRef] [PubMed] [Google Scholar]
- V. Hohmann: Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica united with Acustica 88, 3 (2002) 433–442. [Google Scholar]
- S. Verhulst, T. Dau, C. Shera: Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. Journal of the Acoustical Society of America 132 (2012) 3842–3848. [CrossRef] [PubMed] [Google Scholar]
- M.S.A. Zilany, I.C. Bruce: Representation of the vowel ε in normal and impaired auditory nerve fibers: Model predictions of responses in cats. Journal of the Acoustical Society of America 122 (2007) 402–417. [CrossRef] [PubMed] [Google Scholar]
- M.S.A. Zilany, I.C. Bruce, L.H. Carney: Updated parameters and expanded simulation options for a model of the auditory periphery. Journal of the Acoustical Society of America 135, 1 (2014) 283–286. https://doi.org/10.1121/1.4837815. [CrossRef] [PubMed] [Google Scholar]
- T. Dau, D. Püschel, A. Kohlrausch: A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. Journal of the Acoustical Society of America 99, 6 (1996) 3615–3622. [Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/8655793. [CrossRef] [PubMed] [Google Scholar]
- J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. Journal of the Acoustical Society of America 110, 2 (2001) 1105–1117. [Online]. Available: http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=11519578 [CrossRef] [PubMed] [Google Scholar]
- H. Relaño-Iborra, J. Zaar, T. Dau: A speech-based computational auditory signal processing and perception model. Journal of the Acoustical Society of America 146, 5 (2019) 3306–3317. https://doi.org/10.1121/1.5129114. [CrossRef] [PubMed] [Google Scholar]
- M.L. Jepsen, S.D. Ewert, T. Dau: A computational model of human auditory signal processing and perception. Journal of the Acoustical Society of America 124, 1 (2008) 422–438. [Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/18646987. [CrossRef] [PubMed] [Google Scholar]
- N.F. Viemeister: Temporal modulation transfer functions based upon modulation thresholds. Journal of the Acoustical Society of America 66, 5 (1979) 1364–1380. https://doi.org/10.1121/1.383531. [CrossRef] [PubMed] [Google Scholar]
- F.M. Rønne, T. Dau, J. Harte, C. Elberling: Modeling auditory evoked brainstem responses to transient stimuli. Journal of the Acoustical Society of America 131, 5 (2012) 3903–3913. https://doi.org/10.1121/1.3699171. [CrossRef] [PubMed] [Google Scholar]
- S. Verhulst, H.M. Bharadwaj, G. Mehraei, C.A. Shera, B.G. Shinn-Cunningham: Functional modeling of the human auditory brainstem response to broadband stimulation. Journal of the Acoustical Society of America 138, 3 (2015) 1637–1659. https://doi.org/10.1121/1.4928305. [CrossRef] [PubMed] [Google Scholar]
- A. King, L. Varnet, C. Lorenzi: Accounting for masking of frequency modulation by amplitude modulation with the modulation filter-bank concept. Journal of the Acoustical Society of America 145, 4 (2019) 2277–2293. [CrossRef] [PubMed] [Google Scholar]
- W. Lindemann: Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. Journal of the Acoustical Society of America 80, 6 (1986) 1608–1622. https://doi.org/10.1121/1.394325. [CrossRef] [PubMed] [Google Scholar]
- M. Takanen, O. Santala, V. Pulkki: Binaural assessment of parametrically coded spatial audio signals. In: J. Blauert (Ed.), The technology of binaural listening, Berlin, Germany: Springer. 2013, pp. 333–358. [CrossRef] [Google Scholar]
- B.C.J. Moore, B.R. Glasberg, T. Baer: A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society 45, 4 (1997) 224–240. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=10272 [Google Scholar]
- B.R. Glasberg, B.C.J. Moore: A model of loudness applicable to time-varying sounds. Journal of the Audio Engineering Society 50, 5 (2002) 331–342. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=11081 [Google Scholar]
- Z. Chen, G. Hu, B.R. Glasberg, B.C.J. Moore: A new model for calculating auditory excitation patterns and loudness for cases of cochlear hearing loss. Hearing Research 282, 1 (2011) 69–80. https://doi.org/10.1016/j.heares.2011.09.007. [CrossRef] [PubMed] [Google Scholar]
- B.C.J. Moore, B.R. Glasberg, A. Varathanathan, J. Schlittenlacher: A loudness model for time-varying sounds incorporating binaural inhibition. Trends in Hearing 20 (2016). https://doi.org/10.1177/2331216516682698. [Google Scholar]
- S. Jørgensen, T. Dau: Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. Journal of the Acoustical Society of America 130, 3 (2011) 1475–1487. https://doi.org/10.1121/1.3621502. [CrossRef] [PubMed] [Google Scholar]
- C.H. Taal, R.C. Hendriks, R. Heusdens, J. Jensen: An algorithm for intelligibility prediction of time-frequency weighted noisy speech. IEEE Transactions on Audio, Speech, and Language Processing 19, 7 (2011) 2125–2136. https://doi.org/10.1109/TASL.2011.2114881. [CrossRef] [Google Scholar]
- J.F. Culling, M.L. Hawley, R.Y. Litovsky: The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. Journal of the Acoustical Society of America 1162 (2004) 1057–1065. [Online]. Available: http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=15376672. [CrossRef] [PubMed] [Google Scholar]
- S. Jelfs, J.F. Culling, M. Lavandier: Revision and validation of a binaural model for speech intelligibility in noise. Hearing Research 275, 1–2 (2011). https://doi.org/10.1016/j.heares.2010.12.005. [Google Scholar]
- T. Leclere, M. Lavandier, J.F. Culling: Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking, and binaural de-reverberation. Journal of the Acoustical Society of America 137, 6 (2015) 3335–3345. https://doi.org/10.1121/1.4921028. [CrossRef] [PubMed] [Google Scholar]
- C.F. Hauth, S.C. Berning, B. Kollmeier, T. Brand: Modeling binaural unmasking of speech using a blind binaural processing stage. Trends in Hearing 24 (2020) 2331216520975630. https://doi.org/10.1177/2331216520975630. [CrossRef] [Google Scholar]
- L. Prud’homme, M. Lavandier, V. Best: A harmonic-cancellation-based model to predict speech intelligibility against a harmonic masker. Journal of the Acoustical Society of America 148, 5 (2020) 3246–3254. https://doi.org/10.1121/10.0002492. [CrossRef] [PubMed] [Google Scholar]
- T. Vicente, M. Lavandier: Further validation of a binaural model predicting speech intelligibility against envelope-modulated noises. Hearing Research 390 (2020) 107937. https://doi.org/10.1016/j.heares.2020.107937. [CrossRef] [PubMed] [Google Scholar]
- T. Vicente, M. Lavandier, J.M. Buchholz: A binaural model implementing an internal noise to predict the effect of hearing impairment on speech intelligibility in non-stationary noises. Journal of the Acoustical Society of America 148, 5 (2020) 3305–3317. https://doi.org/10.1121/10.0002660. [CrossRef] [PubMed] [Google Scholar]
- M. Lavandier: A series of speech intelligibility models in the auditory modeling toolbox. Submitted to Acta Acustica (2022). [Google Scholar]
- A. Osses Vecchi, A. Kohlrausch: Perceptual similarity between piano notes: Simulations with a template-based perception model. Journal of the Acoustical Society of America 149, 5 (2021) 3534–3552. https://doi.org/10.1121/10.0004818. [CrossRef] [PubMed] [Google Scholar]
- P. Lladó, P. Hyvärinen, V. Pulkki: Auditory model-based estimation of the effect of head-worn devices on frontal horizontal localisation. Acta Acustica 6 (2022) 1. https://doi.org/10.1051/aacus/2021056. [CrossRef] [EDP Sciences] [Google Scholar]
- P. Zakarauskas, M.S. Cynader: A computational theory of spectral cue localization. Journal of the Acoustical Society of America 94 (1993) 1323–1331. [CrossRef] [Google Scholar]
- E.H.A. Langendijk, A.W. Bronkhorst: Contribution of spectral cues to human sound localization. Journal of the Acoustical Society of America 112, 4 (2002) 1583–1596. https://doi.org/10.1121/1.1501901. [CrossRef] [PubMed] [Google Scholar]
- T. May, S. van de Par, A. Kohlrausch: A probabilistic model for robust localization based on a binaural auditory front-end. IEEE Transactions on Audio, Speech, and Language Processing 19 (2011) 1–13. [CrossRef] [Google Scholar]
- R. Baumgartner, P. Majdak, L. Bernhard: Assessment of sagittal-plane sound localization performance in spatial-audio applications. In: J. Blauert (Ed.), The Technology of Binaural Listening, Berlin, Heidelberg: Springer. 2013, pp. 93–119. [CrossRef] [Google Scholar]
- E. Georganti, T. May, S. van de Par, J. Mourjopoulos: Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Transactions on Audio, Speech, and Language Processing 21, 8 (2013) 1727–1741. https://doi.org/10.1109/TASL.2013.2260155. [CrossRef] [Google Scholar]
- H. Wierstorf, A. Raake, S. Spors: Binaural assessment of multichannel reproduction. In: J. Blauert (Ed.), The Technology of Binaural Listening, Berlin, Heidelberg: Springer, Berlin Heidelberg, 2013, pp. 255–278. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-37762-4_10. [CrossRef] [Google Scholar]
- R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. Journal of the Acoustical Society of America 136 (2014) 791–802. https://doi.org/10.1121/1.4887447. [CrossRef] [PubMed] [Google Scholar]
- J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans: An ideal-observer model of human sound localization. Biological Cybernetics 1082 (2014) 169–181. https://doi.org/10.1007/s00422-014-0588-4. [CrossRef] [PubMed] [Google Scholar]
- D. Kelvasa, M. Dietz: Auditory model-based sound direction estimation with bilateral cochlear implants. Trends in Hearing 19 (2015). https://doi.org/10.1177/2331216515616378. [CrossRef] [Google Scholar]
- R. Baumgartner, P. Majdak, B. Laback: Modeling the effects of sensorineural hearing loss on sound localization in the median plane. Trends in Hearing 20 (2016) 2331216516662003. https://doi.org/10.1177/2331216516662003. [CrossRef] [Google Scholar]
- H.G. Hassager, F. Gran, T. Dau: The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment. Journal of the Acoustical Society of America 139, 5 (2016) 2992–3000. https://doi.org/10.1121/1.4950847. [CrossRef] [PubMed] [Google Scholar]
- R. Baumgartner, D.K. Reed, B. Tóth, V. Best, P. Majdak, H.S. Colburn, B. Shinn-Cunningham: Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences of the United States of America 114, 36 (2017) 9743–9748. https://doi.org/10.1073/pnas.1703247114. [CrossRef] [PubMed] [Google Scholar]
- S. Li, R. Baumgartner, J. Peissig: Modeling perceived externalization of a static, lateral sound image. Acta Acustica 4, 5 (2020) 5. https://doi.org/10.1051/aacus/2020020. [CrossRef] [EDP Sciences] [Google Scholar]
- Robert Baumgartner, Piotr Majdak: Decision making in auditory externalization perception: model predictions for static conditions. Acta Acustica 5 (2021) 59. https://doi.org/10.1051/aacus/2021053. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Barumerli, P. Majdak, R. Baumgartner, M. Geronazzo, F. Avenzini: Predicting human spherical sound-source localization based on Bayesian inference. Submitted to Acta Acustica (2022). [Google Scholar]
- G. McLachlan, P. Majdak, J. Reijniers, H. Peremans: Towards modelling active sound localisation based on Bayesian inference in a static environment. Acta Acustica 5 (2021) 45. https://doi.org/10.1051/aacus/2021039. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Baumgartner, P. Majdak: Modeling localization of amplitude-panned virtual sources in sagittal planes. Journal of the Audio Engineering Society 63, 7/8 (2015) 562–569. https://doi.org/10.17743/jaes.2015.0063. [CrossRef] [Google Scholar]
- R. Baumgartner, P. Majdak, B. Laback: The reliability of contralateral spectral cues for sound localization in sagittal planes, in: Presented at the Midwinter Meeting of the Association for Research in Otolaryngology, Baltimore, MD, USA, 2015. [Google Scholar]
- J. Engel Alonso Martinez, D. Goodman, L. Picinali: Assessing HRTF preprocessing methods for Ambisonics rendering through perceptual models. Acta Acustica 6 (2022) 4. https://doi.org/10.1051/aacus/2021055. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Osses Vecchi, L. Varnet, L.H. Carney, T. Dau, I.C. Bruce, S. Verhulst, P. Majdak: A comparative study of eight human auditory models of monaural processing. Acta Acustica 6 (2022) 17 https://doi.org/10.1051/aacus/2022008. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Röttges, C.F. Hauth, T. Brand, J. Rennies-Hochmuth: Challenging a non-intrusive EC-mechanism: Modelling the Interaction between binaural and temporal speech processing. Submitted to Acta Acustica (2022). [Google Scholar]
- L. Steidle, R. Baumgartner, Geometrical evaluation of methods to approximate interaural time differences by broadband delays, in: Fortschritte der Akustik, Rostock. 2019, 368–370. [Google Scholar]
- W.M. Hartmann, A. Wittenberg: On the externalization of sound images. Journal of the Acoustical Society of America 99, 6 (1996) 3678–3688. [Online]. Available: http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8655799. [CrossRef] [PubMed] [Google Scholar]
- J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring: GNU Octave version 6.1.0 manual: a high-level interactive language for numerica l computations (2020). [Online]. Available: http://www.gnu.org/software/octave/doc/interpreter. [Google Scholar]
- S.D. Ewert: AFC – A modular framework for running psychoacoustic experiments and computational perception models, in: Proceedings of the International Conference on Acoustics AIA-DAGA, Merano, Italy, 2013, pp. 1326–1329. [Google Scholar]
- M. Dietz, J.H. Lestang, P. Majdak, R.M. Stern, T. Marquardt, S.D. Ewert, W.M. Hartmann, D.F. Goodman: A framework for testing and comparing binaural models. Hearing Research 360 (2018) 92–106. https://doi.org/10.1016/j.heares.2017.11.010. [CrossRef] [PubMed] [Google Scholar]
- Z. Průša, P.L. Søndergaard, N. Holighaus, C. Wiesmeyr, P. Balazs: The large time-frequency analysis toolbox 2.0, in: Sound Music, and Motion, Cham, 2014, pp. 419–442. https://doi.org/10.1007/978-3-319-12976-1_25. [Google Scholar]
- P. Majdak, Y. Iwaya, T. Carpentier, R. Nicol, M. Parmentier, A. Roginska, Y. Suzuki, K. Watanabe, H. Wierstorf, H. Ziegelwanger, M. Noisternig: Spatially oriented format for acoustics: a data exchange format representing head-related transfer functions, in: Proceedings of the 134th Convention of the Audio Engineering Society (AES), Roma, Italy, 2013, Convention Paper 8880. [Google Scholar]
- P. Majdak, M.J. Goupell, B. Laback: 3-D localization of virtual sound sources: effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. https://doi.org/10.3758/APP.72.2.454. [CrossRef] [PubMed] [Google Scholar]
- H. Møller, M.F. Sørensen, D. Hammershøi, C.B. Jensen: Head-related transfer functions of human subjects. Journal of the Audio Engineering Society 43 (1995) 300–321. [Google Scholar]
- L.R. Bernstein, S. van de Par, C. Trahiotis: The normalized interaural correlation: Accounting for NoSπ thresholds obtained with Gaussian and \”low-noise\” masking noise. Journal of the Acoustical Society of America 106 (1999) 870. [CrossRef] [PubMed] [Google Scholar]
- S. Chacon, B. Straub: Pro git. 2nd ed., Apress, 2014. [CrossRef] [Google Scholar]
- N. Barnes: Publish your computer code: it is good enough. Nature 467, 7317 (2010) 753. https://doi.org/10.1038/467753a. [CrossRef] [PubMed] [Google Scholar]
- The AMT Team: The Auditory Modeling Toolbox 1.x Full Packages. https://sourceforge.net/projects/amtoolbox/files/AMT%201.x/amtoolbox-full-1.0.0.zip/download (accessed Mar. 17, 2022). [Google Scholar]
- The AMT Team: Documentation of the Auditory Modeling Toolbox (AMT). http://amtoolbox.org/doc.php (accessed Mar. 17, 2022). [Google Scholar]
- The AMT Team: The Auditory Modeling Toolbox (AMT). http://amtoolbox.org/ (accessed Mar. 17, 2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.