Open Access
Acta Acust.
Volume 6, 2022
Article Number 29
Number of page(s) 5
Section Audio Signal Processing and Transducers
Published online 25 July 2022
  1. C. Infante, D. Chamberlain, R. Fletcher, Y. Thorat, R. Kodgule: Use of cough sounds for diagnosis and screening of pulmonary disease, in Proc. GHTC, San Jose, CA, 2017, 1–10. [Google Scholar]
  2. A. Amit, R. Bhardwaj: Reducing chances of COVID-19 infection by a cough cloud in a closed space. Physics of Fluids 32 (2020) 101704. [CrossRef] [PubMed] [Google Scholar]
  3. Z. Ren, N. Cummins, V. Pandit, J. Han, K. Qian, B. Schuller: Learning image-based representations for heart sound classification, in Proc. DH, Lyon, France, 2018, 143–147. [Google Scholar]
  4. C. Brown, J. Chauhan, A. Grammenos, J. Han, A. Hasthanasombat, D. Spathis, T. Xia, P. Cicuta, C. Mascolo: Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data, in Proc. ACM SIGKDD, virtual event, 2020, 3474–3484. [Google Scholar]
  5. A. Muguli, L. Pinto, N. Sharma, P. Krishnan, P.K. Ghosh, R. Kumar, S. Bhat, S.R. Chetupalli, S. Ganapathy, S. Ramoji, V. Nanda: DiCOVA Challenge: Dataset, task, and baseline system for COVID-19 diagnosis using acoustics, in Proc. INTERSPEECH, Brno, Czech Republic, 2021, 901–905. [Google Scholar]
  6. J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fei: ImageNet: A large-scale hierarchical image database, in Proc. CVPR, Miami, FL, 2009, 248–255. [Google Scholar]
  7. J.F. Gemmeke, D.P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R.C. Moore, M. Plakal, M. Ritter: Audio Set: An ontology and human-labeled dataset for audio events, in Proc. ICASSP, New Orleans, LA, 2017, 776–780. [Google Scholar]
  8. T. Koike, K. Qian, Q. Kong, M.D. Plumbley, B. Schuller, Y. Yamamoto, Audio for audio is better? An investigation on transfer learning models for heart sound classification, in Proc. EMBC, Montreal, Canada, 2020, 74–77. [Google Scholar]
  9. N. Alam, M. Ahsan, M.A. Based, J. Haider, M. Kowalski: COVID-19 detection from chest X-ray images using feature fusion and deep learning. Sensors 21 (2021) 1480. [CrossRef] [PubMed] [Google Scholar]
  10. S. Medjkoune, H. Mouchere, S. Petitrenaud, C. Viard-Gaudin: Handwritten and audio information fusion for mathematical symbol recognition, in Proc. ICDAR, Beijing, China, 2011, 379–383. [Google Scholar]
  11. W. Wei, Q. Jia, Y. Feng, G. Chen: Emotion recognition based on weighted fusion strategy of multichannel physiological signals. Computational Intelligence and Neuroscience 2018 (2018) 5296523. [PubMed] [Google Scholar]
  12. Y. Ma, Y. Hao, M. Chen, J. Chen, P. Lu, A. Kosir: Audio-visual emotion fusion (AVEF): A deep efficient weighted approach. Information Fusion 46 (2019) 184–192. [CrossRef] [Google Scholar]
  13. S. Chen, Q. Jin, Multi-modal conditional attention fusion for dimensional emotion prediction, in Proc. ACM Multimedia, Amsterdam, The Netherlands, 2016, 571–575. [Google Scholar]
  14. F. Eyben, F. Weninger, F. Gross, B. Schuller: Recent developments in openSMILE, the Munich open-source multimedia feature extractor, in Proc. ACM Multimedia, Barcelona, Spain, 2013, 835–838. [Google Scholar]
  15. K. Simonyan, A. Zisserman: Very deep convolutional networks for large-scale image recognition, in Proc. ICLR, San Diego, CA, 2015, 14. [Google Scholar]
  16. K. He, X. Zhang, S. Ren, J. Sun: Deep residual learning for image recognition, in Proc. CVPR, Las Vegas, NV, 2016, 770–778. [Google Scholar]
  17. S. Amiriparian, M. Gerczuk, S. Ottl, N. Cummins, M. Freitag, S. Pugachevskiy, A. Baird, B. Schuller: Snore sound classification using image-based deep spectrum features, in Proc. INTERSPEECH, Stockholm, Sweden, 2017, 3512–3516. [Google Scholar]
  18. Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, M. Plumbley: PANNs: Large-scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020) 2880–2894. [CrossRef] [Google Scholar]
  19. J. Han, Z. Zhang, G. Keren, B. Schuller: Emotion recognition in speech with latent discriminative representations learning, Acta Acustica united with Acustica 104 (2018) 737–740. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.