Open Access
Issue |
Acta Acust.
Volume 6, 2022
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 12 | |
Section | Musical Acoustics | |
DOI | https://doi.org/10.1051/aacus/2022024 | |
Published online | 26 July 2022 |
- D. Fandrich: Soundboard technology and manufacture. The Designer’s Notebook, Piano Builders/NW, 1995. [Google Scholar]
- H. Suzuki: Vibration and sound radiation of a piano soundboard. Journal of the Acoustical Society of America 80, 6 (1986) 1573–1582. [CrossRef] [Google Scholar]
- H.A. Conklin Jr: Design and tone in the mechanoacoustic piano. Part II. Piano structure. Journal of the Acoustical Society of America 100, 2 (1996) 695–708. [CrossRef] [Google Scholar]
- N. Giordano: Mechanical impedance of a piano soundboard. Journal of the Acoustical Society of America 103, 4 (1998) 2128–2133. [CrossRef] [Google Scholar]
- K. Ege, X. Boutillon, M. Rébillat: Vibroacoustics of the piano soundboard:(non) linearity and modal properties in the low-and mid-frequency ranges. Journal of Sound and Vibration 332, 5 (2013) 1288–1305. [CrossRef] [Google Scholar]
- A. Chaigne, B. Cotté, R. Viggiano: Dynamical properties of piano soundboards. Journal of the Acoustical Society of America 133, 4 (2013) 2456–2466. [CrossRef] [PubMed] [Google Scholar]
- R. Corradi, S. Miccoli, G. Squicciarini, P. Fazioli: Modal analysis of a grand piano soundboard at successive manufacturing stages. Applied Acoustics 125 (2017) 113–127. [CrossRef] [Google Scholar]
- N. Giordano: Simple model of a piano soundboard. Journal of the Acoustical Society of America 102, 2 (1997) 1159–1168. [CrossRef] [Google Scholar]
- J. Berthaut, M.N. Ichchou, L. Jézéquel: Piano soundboard: Structural behavior and numerical and experimental study in the modal range. Applied Acoustics 64 (2003) 1113–1136. [CrossRef] [Google Scholar]
- X. Boutillon, K. Ege: Vibroacoustics of the piano soundboard: Reduced models, mobility synthesis, and acoustical radiation regime. Journal of Sound and Vibration 332, 18 (2013) 4261–4279. [CrossRef] [Google Scholar]
- B. Trévisan, K. Ege, B. Laulagnet: A modal approach to piano soundboard vibroacoustic behavior. Journal of the Acoustical Society of America 141, 2 (2017) 690–709. [CrossRef] [PubMed] [Google Scholar]
- J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano. Journal of the Acoustical Society of America 134, 1 (2013) 648–665. [CrossRef] [PubMed] [Google Scholar]
- H. Fletcher: Normal vibration frequencies of a stiff piano string. Journal of the Acoustical Society of America 36, 1 (1964) 203–209. [CrossRef] [Google Scholar]
- G. Weinreich: Coupled piano strings. Journal of the Acoustical Society of America 62, 6 (1977) 1474–1484. [CrossRef] [Google Scholar]
- X. Boutillon: Model for piano hammers: Experimental determination and digital simulation. Journal of the Acoustical Society of America 83, 2 (1988) 746–754. [CrossRef] [Google Scholar]
- A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods. Journal of the Acoustical Society of America 95, 2 (1994) 1112–1118. [CrossRef] [Google Scholar]
- H.A. Conklin Jr: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects. Journal of the Acoustical Society of America 99, 6 (1996) 3286–3296. [CrossRef] [Google Scholar]
- H.A. Conklin Jr: Design and tone in the mechanoacoustic piano. Part III. Piano strings and scale design. Journal of the Acoustical Society of America 100, 3 (1996) 1286–1298. [CrossRef] [Google Scholar]
- B. Elie, B. Cotté, X. Boutillon, N. Chauvat, D. Laxalde, F. Bessou, V.-H. Nhu, B. Trévisan: MAESSTRO (version 1.0.0) [Code]. GitLab. 2021. https://gitlab.com/benjamin.elie/maesstro. [Google Scholar]
- C. Geuzaine, J.-F. Remacle: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering 7911 (2009) 1309–1331. [CrossRef] [Google Scholar]
- P.M. Morse, K.U. Ingard: Theoretical acoustics. McGraw-Hill, New York. 1968. [Google Scholar]
- A. Stulov: Hysteretic model of the grand piano hammer felt. Journal of the Acoustical Society of America 97, 4 (1995) 2577–2585. [CrossRef] [Google Scholar]
- A. Stulov: Experimental and theoretical studies of piano hammer, in Proceedings of the Stockholm Music Acoustics Conference, Vol. 485. 2003. [Google Scholar]
- J. Chabassier, M. Duruflé: Physical parameters for piano modeling. Technical Report, INRIA, 2012 [Online]. Available https://hal.inria.fr/hal-00688679v1/document:. [Google Scholar]
- B. Elie, X. Boutillon, J. Chabassier, K. Ege, B. Laulagnet, B. Trévisan, B. Cotté, N. Chauvat: MAESSTRO: A sound synthesis framework for Computer-Aided Design of piano soundboards, in ISMA 2019, Detmold, Germany. 2019. [Google Scholar]
- R. Courant, D. Hilbert: Methods of Mathematicals Physics, Vol. 1, Wiley Classic Edition. 1989. [Google Scholar]
- B. Elie, F. Gautier, B. David: Estimation of mechanical properties of panels based on modal density and mean mobility measurements. Mechanical Systems and Signal Processing 40, 2 (2013) 628–644. [CrossRef] [Google Scholar]
- G. Xie, D.J. Thompson, C.J.C. Jones: Mode count and modal density of structural systems : Relationships with boundary conditions. Journal of Sound and Vibration 274, 3 (2004) 621–651. [CrossRef] [Google Scholar]
- M. Géradin, D. Rixen: Théorie des vibrations. Application à la dynamique des structures, Ed. Masson, Paris. 1992. [Google Scholar]
- E.V. Jansson: Admittance measurements of 25 high quality violins. Acta Acustica united with Acustica 83, 2 (1997) 337–341. [Google Scholar]
- J.A. Torres, R.R. Boullosa: Influence of the bridge on the vibrations of the top plate of a classical guitar. Applied Acoustics 70, 11–12 (2009) 1371–1377. [CrossRef] [Google Scholar]
- B. Elie, F. Gautier, B. David: Macro parameters describing the mechanical behavior of classical guitars. Journal of the Acoustical Society of America 132, 6 (2012) 4013–4024. [Google Scholar]
- K. Ege, X. Boutillon: Synthetic description of the piano soundboard mechanical mobility, in, Sydney and Katoomba, Australia. 2010. [Google Scholar]
- E. Skudrzyk: The mean value method of predicting the dynamic response of complex vibrators. Journal of the Acoustical Society of America 67, 4 (1980) 1105–1135. [CrossRef] [Google Scholar]
- M.R. Schroeder: New method of measuring reverberation time. Journal of the Acoustical Society of America 66, 2 (1965) 928–944. [Google Scholar]
- M.R. Schroeder: Integrated-impulse method measuring sound decay without using impulses. Journal of the Acoustical Society of America 66, 2 (1965) 497–500. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.