Open Access
Acta Acust.
Volume 6, 2022
Article Number 40
Number of page(s) 11
Section Audio Signal Processing and Transducers
Published online 23 September 2022
  1. S. Ryherd, M. Kleiner, K.P. Waye, E.E. Ryherd: Influence of a wearer’s voice on noise dosimeter measurements. The Journal of the Acoustical Society of America 131, 2 (2012) 1183–1193. [CrossRef] [PubMed] [Google Scholar]
  2. G. Blanken, J. Dittmann, H. Grimm, J.C. Marshall, C.W. Wallesch: Linguistic disorders and pathologies: An international handbook, in Handbücher zur Sprach- und Kommunikationswissenschaft/Handbooks of Linguistics and Communication Science (HSK), De Gruyter, 2008. [Google Scholar]
  3. I. Holube, P. von Gablenz, J. Bitzer: Ecological momentary assessment in hearing research: Current state, challenges, and future directions. Ear & Hearing 41, S1 (2020) 79S–90S. [CrossRef] [PubMed] [Google Scholar]
  4. N.S. Jensen, C. Nielsen: Auditory ecology in a group of experienced hearing-aid users: Can knowledge about hearing-aid users’ auditory ecology improve their rehabilitation, in Proceedings of the 21st Danavox Symposium, Kolding, Denmark, August 31–September 2, 2005, 235–258. [Google Scholar]
  5. K.C. Wagener, M. Hansen, C. Ludvigsen: Recording and classification of the acoustic environment of hearing aid users. Journal of the American Academy of Audiology 19, 04 (2008) 348–370. [CrossRef] [PubMed] [Google Scholar]
  6. K. Smeds, F. Wolters, M. Rung: Estimation of signal-to-noise ratios in realistic sound scenarios. Journal of the American Academy of Audiology 26, 02 (2015) 183–196. [CrossRef] [PubMed] [Google Scholar]
  7. Y.-H. Wu, R.A. Bentler: Do older adults have social lifestyles that place fewer demands on hearing? Journal of the American Academy of Audiology 23, 09 (2012) 697–711. [CrossRef] [PubMed] [Google Scholar]
  8. Y.-H. Wu, E. Stangl, O. Chipara, S.S. Hasan, A. Welhaven, J. Oleson: Characteristics of real-world signal to noise ratios and speech listening situations of older adults with mild to moderate hearing loss. Ear & Hearing 39, 2 (2018) 293–304. [CrossRef] [PubMed] [Google Scholar]
  9. J.H. Christensen, G.H. Saunders, M. Porsbo, N.H. Pontoppidan: The everyday acoustic environment and its association with human heart rate: Evidence from real-world data logging with hearing aids and wearables. Royal Society Open Science 8 (2021) 1–16. [CrossRef] [Google Scholar]
  10. I.R. Titze, E.J. Hunter, J.G. Svec: Voicing and silence periods in daily and weekly vocalizations of teachers. The Journal of the Acoustical Society of America 121, 1 (2007) 469–478. [CrossRef] [PubMed] [Google Scholar]
  11. T. Masuda, Y. Ikeda, H. Manako, S. Komiyama: Analysis of vocal abuse: Fluctuations in phonation time and intensity in 4 groups of speakers. Acta Oto-Laryngologica 113, 4 (1993) 547–552. [CrossRef] [PubMed] [Google Scholar]
  12. D. Mehta, H. Cheyne, A. Wehner, J. Heaton, R. Hillman: Accuracy of self-reported estimates of daily voice use in adults with normal and disordered voices. American Journal of Speech-Language Pathology 25 (2016) 1–8. [Google Scholar]
  13. M.R. Mehl, J.W. Pennebaker, D.M. Crow, J. Dabbs, J.H. Price: The electronically activated recorder (EAR): A device for sampling naturalistic daily activities and conversations. Behavior Research Methods, Instruments, & Computers 33, 4 (2001) 517–523. [CrossRef] [PubMed] [Google Scholar]
  14. N. Fhärm, F. Skoglund, J. van Doorn: Time spent talking in retirement, in Proceedings of the 15th Australasian International Speech Science and Technology Conference, Christchurch, New Zealand, 2014. [Google Scholar]
  15. P. von Gablenz, U. Kowalk, J. Bitzer, M. Meis, I. Holube: Individual hearing aid benefit in real life evaluated using ecological momentary assessment. Trends in Hearing 25 (2021) 1–18. [Google Scholar]
  16. A. Carullo, A. Vallan, A. Astolfi: Design issues for a portable vocal analyzer. IEEE Transactions on Instrumentation and Measurement 62, 5 (2013) 1084–1093. [CrossRef] [Google Scholar]
  17. T. Powers, M. Froehlich, E. Branda, J. Weber: Clinical study shows significant benefit of own voice processing. Hearing Review 25, 2 (2018) 30–34. [Google Scholar]
  18. T. Behrens, C. Nielsen, T. Lunner, C. Elberling: Method of programming a communication device and a programmable communication device. US Patent 7,340,231, 2008. [Google Scholar]
  19. M. Lugger: Hearing apparatus with own speaker activity detection and method for operating a hearing apparatus. US Patent 8,873,779, 2014. [Google Scholar]
  20. V. Hamacher: Hearing apparatus and a method for own-voice detection. US Patent 7,853,031, 2010. [Google Scholar]
  21. S. Granqvist: The self-to-other ratio applied as a phonation detector for voice accumulation. Logopedics Phonatrics Vocology 28, 2 (2003) 71–80. [CrossRef] [PubMed] [Google Scholar]
  22. K.B. Rasmussen, S. Laugesen: Method for detection of own voice activity in a communication device. US Patent 7,512,245, 2009. [Google Scholar]
  23. J. Bitzer, S. Bilert, I. Holube: Evaluation of binaural own voice detection (OVD) algorithms, in Speech Communication; 13th ITG-Symposium, VDE, 2018, 1–5 [Google Scholar]
  24. J. Bitzer, S. Kissner, I. Holube: Privacy-aware acoustic assessments of everyday life. Journal of the Audio Engineering Society 64, 6 (2016) 395–404. [CrossRef] [Google Scholar]
  25. S. Kissner, I. Holube, J. Bitzer: A smartphone-based, privacy-aware recording system for the assessment of everyday listening situations, in Proceedings of the International Symposium on Auditory and Audiological Research, Nyborg, Denmark, August 26–28, 2015, 445–452. [Google Scholar]
  26. U. Kowalk, S. Kissner, P. von Gablenz, I. Holube, J. Bitzer: An improved privacy-aware system for objective and subjective ecological momentary assessment, in Proceedings of the International Symposium on Auditory and Audiological Research, Nyborg, Denmark, August 23–25, 2017, 25B–30B. [Google Scholar]
  27. R. Baker, V. Hazan: DiapixUK: Task materials for the elicitation of multiple spontaneous speech dialogs. Behavior Research Methods 43, 3 (2011) 761–770. [CrossRef] [PubMed] [Google Scholar]
  28. G. Grimm, J. Luberadzka, V. Hohmann: A toolbox for rendering virtual acoustic environments in the context of audiology. Acta Acustica United with Acustica 105, 3 (2019) 566–578. [CrossRef] [Google Scholar]
  29. M.M.E. Hendrikse, G. Llorach, V. Hohmann, G. Grimm; Movement and gaze behavior in virtual audiovisual listening environments resembling everyday life. Trends in Hearing 23 (2019) 1–29. [Google Scholar]
  30. M.M.E. Hendrikse, G. Llorach, V. Hohmann, G. Grimm: Virtual Audiovisual Everyday-Life Environments for Hearing Aid Research (Version 2) [Database]. Zenodo, 2019. [Google Scholar]
  31. J. Bitzer, S. Kissner: Two-channel coherence-based own voice detection for privacy-aware longterm acoustic measurements, in Speech Communication; 12. ITG Symposium; Proceedings of, VDE, 2016, 1–5. [Google Scholar]
  32. S. Graf, T. Herbig, M. Buck, G. Schmidt: Features for voice activity detection: A comparative analysis. EURASIP Journal on Advances in Signal Processing 2015, 1 (2015) 91–105. [CrossRef] [Google Scholar]
  33. S. Schötz: Acoustic analysis of adult speaker age, in M. Christian, Ed. Speaker Classification I, Lecture Notes in Computer Science, Vol. 1, Springer, 2007, 88–107 [CrossRef] [Google Scholar]
  34. L. Breiman: Random forests. Machine Learning 45, 1 (2001) 5–32. [NASA ADS] [CrossRef] [Google Scholar]
  35. G. Biau, E. Scornet: A random forest guided tour. TEST 25, 2 (2016) 197–227. [CrossRef] [Google Scholar]
  36. A. Fernández, S. García, M. Galar, R.C. Prati, B. Krawczyk, F. Herrera: Cost-sensitive learning, Springer International Publishing, Cham. 2018, 63–78. [Google Scholar]
  37. S. Marsland: Machine learning: An algorithmic perspective. CRC Press, 2009. [Google Scholar]
  38. S. Gustafson-Čapková, B. Megyesi: A comparative study of pauses in dialogues and read speech, in Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001, 931–935 [Google Scholar]
  39. H. Lazarus, C.A. Sust, R. Steckel, M. Kulka, P. Kurtz: Akustische Grundlagen sprachlicher Kommunikation. Springer, 2007. [Google Scholar]
  40. K.S. Pearsons, R.L. Bennett, S.A. Fidell: Speech levels in various noise environments, Office of Health and Ecological Effects, Office of Research and Development (EPA-600/1-77-025) US Environmental Protection Agency, Washington DC, 1977. [Google Scholar]
  41. B. Hagerman: Sentences for testing speech intelligibility in noise. Scandinavian Audiology 11 (1982) 79–87. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.