Issue
Acta Acust.
Volume 6, 2022
Topical Issue - Aeroacoustics: state of art and future trends
Article Number 39
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2022030
Published online 23 September 2022
  1. M. Kaltenbacher, M. Escobar, S. Becker, I. Ali: Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustic analogy. International journal for numerical methods in fluids 63, 9 (2010) 1103–1122. [Google Scholar]
  2. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: State of art and new achievements. Journal of Theoretical and Computational Acoustics 27, 04 (2019) 1950020. [Google Scholar]
  3. W. Bechara, C. Bailly, P. Lafon, S.M. Candel: Stochastic approach to noise modeling for free turbulent flows. AIAA Journal 32, 3 (1994) 455–463. [CrossRef] [Google Scholar]
  4. Q. Zhang, W. Schröder, M. Meinke: A zonal RANS-LES method to determine the flow over a high-lift configuration. Computers & Fluids 39, 7 (2010) 1241–1253. [CrossRef] [Google Scholar]
  5. L. Erbig, M. Maihöfer: A hybrid RANS/LES for automotive gap noise simulations, in 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May, 2019, 2445 p. [Google Scholar]
  6. T. Kuhn, J. Dürrwächter, A. Beck, C.-D. Munz: Zonal large eddy simulation of active open cavity noise using a high order discontinuous Galerkin method, in 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May, 2019, 2465 p. [Google Scholar]
  7. M. Terracol: A zonal RANS/LES approach for noise sources prediction. Flow, Turbulence and Combustion 77, 1 (2006) 161–184. [CrossRef] [Google Scholar]
  8. P. Bernicke, R. Akkermans, V.B. Ananthan, R. Ewert, J. Dierke, L. Rossian: A zonal noise prediction method for trailing-edge noise with a porous model. International Journal of Heat and Fluid Flow 80 (2019) 108469. [CrossRef] [Google Scholar]
  9. S. Satcunanathan, M. Meinke, W. Schroeder: Numerical analysis of poro-serrated trailing-edge noise, in 28th AIAA/CEAS Aeroacoustics 2022 Conference, Southampton, UK, June 14–17, 2022, 2817 p. [Google Scholar]
  10. K. Nusser, S. Becker: Numerical investigation of the fluid structure acoustics interaction on a simplified car model. Acta Acustica 5 (2021) 22. [CrossRef] [EDP Sciences] [Google Scholar]
  11. C. Bailly, C. Bogey, O. Marsden: Progress in direct noise computation. International Journal of Aeroacoustics 9, 1–2 (2010) 123–143. [CrossRef] [Google Scholar]
  12. H.M. Frank, C.-D. Munz: Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror. Journal of Sound and Vibration 371 (2016) 132–149. [CrossRef] [Google Scholar]
  13. S. Schoder, K. Roppert, M. Kaltenbacher: Postprocessing of direct aeroacoustic simulations using Helmholtz decomposition. AIAA Journal 58, 7 (2020) 3019–3027. [CrossRef] [Google Scholar]
  14. D. Flad, H. Frank, A. Beck, C.-D. Munz: A discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics, in 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper (2014-2740), Atlanta, GA, 16–20 June, 2014. [Google Scholar]
  15. T. Kuhn: Quantification of uncertainty in aeroacoustic cavity noise simulations with a discontinuous Galerkin solver. Verlag Dr. Hut, 2021. [Google Scholar]
  16. M.A. Schlottke-Lakemper: A direct-hybrid method for aeroacoustic analysis. Verlag Dr. Hut, 2017. [Google Scholar]
  17. G. Gassner, D.A. Kopriva: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM Journal on Scientific Computing 33, 5 (2011) 2560–2579. [CrossRef] [Google Scholar]
  18. N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. Gassner, F. Hindenlang, M. Hoffmann, T. Kuhn, M. Sonntag, C.-D. Munz: FLEXI: A high order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws. Computers and Mathematics with Applications 81 (2021) 186–219. [CrossRef] [Google Scholar]
  19. R. Ewert, W. Schröder: Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188, 2 (2003) 365–398. [Google Scholar]
  20. D.A. Kopriva: Metric identities and the discontinuous spectral element method on curvilinear meshes. Journal of Scientific Computing 26, 3 (2006) 301. [CrossRef] [Google Scholar]
  21. D.A. Kopriva: Implementing spectral methods for partial differential equations: algorithms for scientists and engineers. Springer Science & Business Media, 2009. [CrossRef] [Google Scholar]
  22. E.F. Toro: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, 2013. [Google Scholar]
  23. F. Bassi, S. Rebay: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. Journal of Computational Physics 131, 2 (1997) 267–279. [CrossRef] [Google Scholar]
  24. G.J. Gassner, A.R. Winters, D.A. Kopriva: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. Journal of Computational Physics 327 (2016) 39–66. [CrossRef] [Google Scholar]
  25. D. Flad, G. Gassner: On the use of kinetic energy preserving DG-schemes for large eddy simulation. Journal of Computational Physics 350 (2017) 782–795. [CrossRef] [Google Scholar]
  26. S. Pirozzoli: Numerical methods for high-speed flows. Annual Review of Fluid Mechanics 43 (2011) 163–194. [CrossRef] [Google Scholar]
  27. M.H. Carpenter, C.A. Kennedy: Fourth-order 2N-storage Runge-Kutta schemes. Technical Report, NASA-TM-109112, 1994. [Google Scholar]
  28. D. Pruett, T. Gatski, C. Grosch, W. Thacker: The temporally filtered Navier–Stokes equations: properties of the residual stress. Physics of Fluids 15, 8 (2003) 2127–2140. [CrossRef] [Google Scholar]
  29. De Laage, B. de Meux, B. Audebert, R. Manceau, R. Perrin: Anisotropic linear forcing for synthetic turbulence generation in large eddy simulation and hybrid RANS/LES modeling. Physics of Fluids 27, 3 (2015) 035115. [CrossRef] [Google Scholar]
  30. T.S. Lund, X. Wu, K.D. Squires: Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics 140, 2 (1998) 233–258. [CrossRef] [Google Scholar]
  31. M. Klein, A. Sadiki, J. Janicka: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics 186, 2 (2003) 652–665. [CrossRef] [Google Scholar]
  32. P. Sagaut, E. Garnier, E. Tromeur, L. Larcheveque, E. Labourasse: Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows. AIAA Journal 42, 3 (2004) 469–477. [CrossRef] [Google Scholar]
  33. P. Bradshaw, D. Ferriss, N. Atwell: Calculation of boundary-layer development using the turbulent energy equation. Journal of Fluid Mechanics 28, 3 (1967) 593–616. [CrossRef] [Google Scholar]
  34. G. Eitel-Amor, R. Örlü, P. Schlatter: Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ = 8300. International Journal of Heat and Fluid Flow 47 (2014) 57–69. [CrossRef] [Google Scholar]
  35. P. Schlatter, R. Örlü: Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics 659 (2010) 116–126. [CrossRef] [Google Scholar]
  36. L.E. Jones, R.D. Sandberg: Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops. Journal of Sound and Vibration 330, 25 (2011) 6137–6152. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.