Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 55
Number of page(s) 14
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2022032
Published online 29 November 2022
  1. S.T. Goverts, H.S. Colburn: Binaural recordings in natural acoustic environments: estimates of speech-likeness and interaural parameters. Trends in Hearing 24 (2020) 1–19. https://doi.org/10.1177/2331216520972858. [Google Scholar]
  2. R. Plomp: Auditory handicap of hearing impairment and the limited benefit of hearing aids. The Journal of the Acoustical Society of America 63 (1978) 533–549. https://doi.org/10.1121/1.381753. [CrossRef] [PubMed] [Google Scholar]
  3. A. Warzybok, T. Brand, K.C. Wagener, B. Kollmeier: How much does language proficiency by non-native listeners influence speech audiometric tests in noise? International Journal of Audiology 54, sup2 (2015) 88–99. https://doi.org/10.3109/14992027.2015.1063715. [CrossRef] [PubMed] [Google Scholar]
  4. S.D. Ewert: Defining the proper stimulus and its ecology – “mammals”. The senses: a comprehensive reference, Elsevier, 2020, pp. 187–206. https://doi.org/10.1016/B978-0-12-809324-5.24238-7. [Google Scholar]
  5. H.J.M. Steeneken, T. Houtgast: A physical method for measuring speech-transmission quality. The Journal of the Acoustical Society of America 67 (1980) 318–326. https://doi.org/10.1121/1.384464. [CrossRef] [PubMed] [Google Scholar]
  6. ANSI: S3.5 (R2007), American National Standard Methods for the Calculation of the Speech Intelligibility Index. Acoustical Society of America, New York, 1997. [Google Scholar]
  7. K.S. Rhebergen, N.J. Versfeld, W.A. Dreschler: Extended speech intelligibility index for the prediction of the speech reception threshold in fluctuating noise. The Journal of the Acoustical Society of America 120 (2006) 3988–3997. https://doi.org/10.1121/1.2358008. [CrossRef] [PubMed] [Google Scholar]
  8. R. Beutelmann, T. Brand, B. Kollmeier: Prediction of binaural speech intelligibility with frequency-dependent interaural phase differences. The Journal of the Acoustical Society of America 126 (2009) 1359–1368. https://doi.org/10.1121/1.3177266. [CrossRef] [PubMed] [Google Scholar]
  9. S. Jørgensen, S.D. Ewert, T. Dau: A multi-resolution envelope-power based model for speech intelligibility. The Journal of the Acoustical Society of America 134 (2013) 436–446. https://doi.org/10.1121/1.4807563. [CrossRef] [PubMed] [Google Scholar]
  10. T. Biberger, S.D. Ewert: Envelope and intensity based prediction of psychoacoustic masking and speech intelligibility. The Journal of the Acoustical Society of America 140 (2016) 1023–1038. https://doi.org/10.1121/1.4960574. [CrossRef] [PubMed] [Google Scholar]
  11. M. Cord, D. Baskent, S. Kalluri, B. Moore: Disparity between clinical assessment and real-world performance of hearing aids. Hearing Review 14 (2007) 22. [Google Scholar]
  12. J. Jerger: Ecologically valid measures of hearing aid performance. Starkey Audiology Series 1 (2009) 1–4. [Google Scholar]
  13. S. Kerber, B.U. Seeber, Towards quantifying cochlear implant localization performance in complex acoustic environments, Cochlear Implants Intl. 12 (2011) S27–29. https://doi.org/10.1179/146701011X13074645127351. [CrossRef] [PubMed] [Google Scholar]
  14. K.M. Miles, G. Keidser, K. Freeston, T. Beechey, V. Best, J.M. Buchholz: Development of the everyday conversational sentences in noise test. The Journal of the Acoustical Society of America 147 (2020) 1562–1576. https://doi.org/10.1121/10.0000780. [CrossRef] [PubMed] [Google Scholar]
  15. M.T. Cord, R.K. Surr, B.E. Walden, O. Dyrlund: Relationship between laboratory measures of directional advantage and everyday success with directional microphone hearing aids. Journal of the American Academy of Audiology 15 (2004) 353–364. https://doi.org/10.3766/jaaa.15.5.3. [CrossRef] [PubMed] [Google Scholar]
  16. R.A. Bentler: Effectiveness of directional microphones and noise reduction schemes in hearing aids: a systematic review of the evidence. Journal of the American Academy of Audiology 16 (2005) 473–484. https://doi.org/10.3766/jaaa.16.7.7. [CrossRef] [PubMed] [Google Scholar]
  17. G. Keidser, G. Naylor, D.S. Brungart, A. Caduff, J. Campos, S. Carlile, M.G. Carpenter, et al. The Quest for Ecological Validity in Hearing Science: What it is, why it matters, and how to advance it. Ear & Hearing 41 (2020) 5S–19S. https://doi.org/10.1097/AUD.0000000000000944. [CrossRef] [PubMed] [Google Scholar]
  18. B.U. Seeber, S. Clapp: Auditory room learning and adaptation to sound reflections. In: J. Blauert, J. Braasch (Eds.), The Technology of Binaural Understanding, Springer, 2020, pp. 203–222. https://doi.org/10.1007/978-3-030-00386-9_8. [CrossRef] [Google Scholar]
  19. A. Weisser, J.M. Buchholz, G. Keidser: Complex acoustic environments: review, framework, and subjective model. Trends in Hearing 23 (2019) 2331216519881346. https://doi.org/10.1177/2331216519881346. [CrossRef] [Google Scholar]
  20. D.S. Brungart, N. Iyer: Better-ear glimpsing efficiency with symmetrically-placed interfering talkers. The Journal of the Acoustical Society of America 132 (2012) 2545–2556. https://doi.org/10.1121/1.4747005. [CrossRef] [PubMed] [Google Scholar]
  21. A. Lingner, B. Grothe, L. Wiegrebe, S.D. Ewert, Binaural glimpses at the cocktail party? Journal of the Association for Research in Otolaryngology 17 (2016) 461–473. https://doi.org/10.1007/s10162-016-0575-7. [CrossRef] [PubMed] [Google Scholar]
  22. A.W. Bronkhorst, R. Plomp: The effect of head-induced interaural time and level differences on speech intelligibility in noise. The Journal of the Acoustical Society of America 83 (1988) 1508–1516. https://doi.org/10.1121/1.395906. [CrossRef] [PubMed] [Google Scholar]
  23. J. Peissig, B. Kollmeier: Directivity of binaural noise reduction in spatial multiple noise-source arrangements for normal and impaired listeners. The Journal of the Acoustical Society of America 101 (1997) 1660–1670. https://doi.org/10.1121/1.418150. [CrossRef] [PubMed] [Google Scholar]
  24. V. Best, C.R. Mason, G. Kidd, N. Iyer, D.S. Brungart: Better-ear glimpsing in hearing-impaired listeners. The Journal of the Acoustical Society of America 137 (2015) EL213–EL219. https://doi.org/10.1121/1.4907737. [CrossRef] [PubMed] [Google Scholar]
  25. E. Schoenmaker, T. Brand, S. van de Par: The multiple contributions of interaural differences to improved speech intelligibility in multitalker scenarios. The Journal of the Acoustical Society of America 139 (2016) 2589–2603. https://doi.org/10.1121/1.4948568. [CrossRef] [PubMed] [Google Scholar]
  26. S.D. Ewert, W. Schubotz, T. Brand, B. Kollmeier: Binaural masking release in symmetric listening conditions with spectro-temporally modulated maskers. The Journal of the Acoustical Society of America 142, 1 (2017) 12–28. https://doi.org/10.1121/1.4990019. [CrossRef] [PubMed] [Google Scholar]
  27. R. Beutelmann, T. Brand: Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. The Journal of the Acoustical Society of America 120 (2006) 331–342. https://doi.org/10.1121/1.2202888. [CrossRef] [PubMed] [Google Scholar]
  28. T. Biberger, S.D. Ewert: The effect of room acoustical parameters on speech reception thresholds and spatial release from masking. The Journal of the Acoustical Society of America 146 (2019) 2188–2200. https://doi.org/10.1121/1.5126694. [CrossRef] [PubMed] [Google Scholar]
  29. G. Kidd, T.L. Arbogast, C.R. Mason, F.J. Gallun: The advantage of knowing where to listen. The Journal of the Acoustical Society of America 118, 6 (2005) 3804–3815. https://doi.org/10.1121/1.2109187. [CrossRef] [PubMed] [Google Scholar]
  30. R. Teraoka, S. Sakamoto, Z. Cui, Y. Suzuki: Effects of auditory spatial attention on word intelligibility performance, in 2017 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP17), Guam, USA, 2017, 485–488. [Google Scholar]
  31. V. Best, E.J. Ozmerai, B.G. Shinn-Cunningham: Visually-guided attention enhances target identification in a complex auditory scene. Journal of the Association for Research in Otolaryngology 8 (2007) 294–304. https://doi.org/10.1007/s10162-007-0073-z. [CrossRef] [PubMed] [Google Scholar]
  32. M.M.E. Hendrikse, G. Grimm, V. Hohmann: Evaluation of the influence of head movement on hearing aid algorithm performance using acoustic simulations. Trends in Hearing 24 (2020) 1–20. https://doi.org/10.1177/2331216520916682. [Google Scholar]
  33. J.A. Grange, J.F. Culling: The benefit of head orientation to speech intelligibility in noise. The Journal of the Acoustical Society of America 139, 2 (2016) 703–712. https://doi.org/10.1121/1.4941655. [CrossRef] [PubMed] [Google Scholar]
  34. W.H. Sumby, I. Pollack: Visual contribution to speech intelligibility in noise. The Journal of the Acoustical Society of America 26 (1954) 212–215. https://doi.org/10.1121/1.1907309. [CrossRef] [Google Scholar]
  35. A. MacLeod, A.Q. Summerfield: Quantifying the benefits of vision to speechperception in noise. British Journal of Audiology 21, 4 (1987) 131–141. https://doi.org/10.3109/03005368709077786. [CrossRef] [PubMed] [Google Scholar]
  36. J.-L. Schwartz, F. Berthommier, C. Savariaux: Seeing to hear better: evidence for early audio-visual interactions in speech identification. Cognition 93, 2 (2004) B69–B78. https://doi.org/10.1016/j.cognition.2004.01.006. [CrossRef] [PubMed] [Google Scholar]
  37. H. Kayser, S.D. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, B. Kollmeier: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing 2009, 1 (2009) 298605. https://doi.org/10.1155/2009/298605. [CrossRef] [Google Scholar]
  38. J.F. Culling: Speech intelligibility in virtual restaurants. The Journal of the Acoustical Society of America 140, 4 (2016) 2418–2426. https://doi.org/10.1121/1.4964401. [CrossRef] [PubMed] [Google Scholar]
  39. S. Kerber, B.U. Seeber: Localization in reverberation with cochlear implants: predicting performance from basic psychophysical measures. Journal of the Association for Research in Otolaryngology 14, 3 (2013) 379–392. https://doi.org/10.1007/s10162-013-0378-z. [CrossRef] [PubMed] [Google Scholar]
  40. F. Pausch, L. Aspöck, M. Vorländer, J. Fels: An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss. Trends in Hearing 22 (2018). https://doi.org/10.1177/2331216518800871. [CrossRef] [Google Scholar]
  41. M. Blau, A. Budnik, M. Fallahi, H. Steffens, S.D. Ewert, S. van de Par: Toward realistic binaural auralizations – perceptual comparison between measurement and simulation-based auralizations and the real room for a classroom scenario. Acta Acustica 5 (2021) 8–12. https://doi.org/10.1051/aacus/2020034. [CrossRef] [EDP Sciences] [Google Scholar]
  42. E. Hafter, B. Seeber: The simulated open field environment for auditory localization research, in: Proc. ICA 2004, 18th Int. Congress on Acoustics, Kyoto, Japan, 4–9 April, Int. Commission on Acoustics, Vol. 5, 2004, pp. 3751–3754. [Google Scholar]
  43. B.U. Seeber, S. Kerber, E.R. Hafter: A system to simulate and reproduce audio-visual environments for spatial hearing research. Hearing Research 260 (2010) 1–10. https://doi.org/10.1016/j.heares.2009.11.004. [CrossRef] [PubMed] [Google Scholar]
  44. D. Schröder, M. Vorländer: RAVEN: A real-time framework for the auralization of interactive virtual environments, in: Presented at the Forum Acusticum, Aalborg, Denmark, 2011, pp. 1541–1546. [Google Scholar]
  45. T. Wendt, S. van de Par, S.D. Ewert: A computationally-efficient and perceptually-plausible algorithm for binaural room impulse response simulation. Journal of the Audio Engineering Society 62, 11 (2014) 748–766. http://www.aes.org/e-lib/browse.cfm?elib=17550. [Google Scholar]
  46. G. Grimm, B. Kollmeier, V. Hohmann: Spatial acoustic scenarios in multichannel loudspeaker systems for hearing aid evaluation. Journal of the American Academy of Audiology 27, 7 (2016) 557–566. https://doi.org/10.3766/jaaa.15095. [CrossRef] [PubMed] [Google Scholar]
  47. H. Levitt: Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America 49 (1971) 467–477. https://doi.org/10.1121/1.1912375. [CrossRef] [Google Scholar]
  48. B. Hagerman: Sentences for testing speech intelligibility in noise. Scandinavian Audiology 11 (1982) 79–87. https://doi.org/10.3109/01050398209076203. [CrossRef] [PubMed] [Google Scholar]
  49. K.C. Wagener, T. Brand, B. Kollmeier: Entwicklung und Evaluation eines Satztests für die deutsche Sprache Teil III: Evaluation des Oldenburger Satztests. Zeitschrift für Audiologie 38 (1999) 86–95. [Google Scholar]
  50. B. Kollmeier, A. Warzybok, S. Hochmuth, M.A. Zokoll, V. Uslar, T. Brand, K.C. Wagener: The multilingual matrix test: Principles, applications, and comparison across languages: A review. International Journal of Audiology 54, sup2 (2015) 3–16. https://doi.org/10.3109/14992027.2015.1020971. [CrossRef] [PubMed] [Google Scholar]
  51. P. Dietrich, M. Guski, M. Pollow, M. Müller-Trapet, B. Masiero, R. Scharrer, M. Vorländer: ITA-Toolbox – An Open Source MATLAB Toolbox for Acousticians, in: 38. Jahrestagung der Deutschen Gesellschaft für Audiologie, Darmstadt. 2012. https://git.rwth-aachen.de/ita/toolbox. [Google Scholar]
  52. L. Hladek, B.U. Seeber: Underground station environment (1.1) [Data set]. Zenodo, 2022. https://doi.org/10.5281/zenodo.6025631. [Google Scholar]
  53. G. Grimm, M. Hendrikse, V. Hohmann: Pub environment [Data set]. Zenodo, 2021. https://doi.org/10.5281/zenodo.5886987. [Google Scholar]
  54. J. Schütze, C. Kirsch, K.C. Wagener, B. Kollmeier, S.D. Ewert: Living room environment (1.1) [Data set], Zenodo, 2021. https://doi.org/10.5281/zenodo.5747753. [Google Scholar]
  55. H. Hládek, B.U. Seeber: Communication conditions in virtual acoustic scenes in an underground station. Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 2021, pp. 1–8. https://doi.org/10.1109/I3DA48870.2021.9610843. [Google Scholar]
  56. M. Schulte, M. Vormann, M. Meis, K. Wagener, B. Kollmeier: Vergleich der Höranstrengung im Alltag und im Labor, in: 16. Jahrestagung der Deutschen Gesellschaft für Audiologie (Rostock), 2013. [Google Scholar]
  57. A. Haeussler, S. van de Par: Crispness, speech intelligibility, and coloration of reverberant recordings played back in another reverberant room (Room-In-Room). The Journal of the Acoustical Society of America 145, 2 (2019) 931–944. https://doi.org/10.1121/1.5090103. [CrossRef] [PubMed] [Google Scholar]
  58. D. Leckschat, C. Epe, M. Kob, B. Seeber, S. Spors, S. Weinzierl, F. Zotter, DEGA-Memorandum Nr. VA 1201 zur Durchführung und Dokumentation von Audio-Produktionen für wissenschaftliche Anwendungen in der Akustik, DEGA VA 1201, 2020. https://doi.org/10.5281/ZENODO.3597238. [Google Scholar]
  59. P. Majdak, Y. Iwaya, T. Carpentier, R. Nicol, M. Parmentier, A. Roginska, Y. Suzuki, K. Watanabe, H. Wierstorf, H. Ziegelwanger, M. Noistering: Spatially oriented format for acoustics: a data exchange format representing head-related transfer functions, in: Audio Eng. Society Convention, Paper 8880, 2013. https://www.aes.org/e-lib/browse.cfm?elib=16781. [Google Scholar]
  60. P. Majdak, F. Zotter, F. Brinkmann, J. De Muynke, M. Mihocic, M. Noisternig: Spatially oriented format for acoustics 2.1: introduction and recent advances. Journal of the Audio Engineering Society 70 (2022) 565–584. https://doi.org/10.17743/jaes.2022.0026. [CrossRef] [Google Scholar]
  61. F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, S. Weinzierl: A round robin in room acoustical simulation and auralization. The Journal of the Acoustical Society of America 45 (2019) 2746. https://doi.org/10.1121/1.5096178. [CrossRef] [PubMed] [Google Scholar]
  62. FN Llorca-Bofí, I. Witew, E. Redondo, M. Vorländer: 3D modelling photogrammetry to support acoustic measurements and derive geometries for simulation, in: Presented at the Auditorium Acoustics, Hamburg, Germany, 2018. https://doi.org/10.5281/zenodo.2583195. [Google Scholar]
  63. J. Llorca-Bofí, M. Vorländer: Multi-detailed 3D architectural framework for sound perception research in Virtual Reality. Frontiers in Built Environment 7 (2021) 687237. https://doi.org/10.3389/fbuil.2021.687237. [CrossRef] [Google Scholar]
  64. J. Llorca-Bofí, M. Vorländer: IHTAclassroom. Multi-detailed 3D architecture model for sound perception research in Virtual Reality [Data set]. Zenodo, 2021. https://doi.org/10.5281/zenodo.4629716. [Google Scholar]
  65. J. Llorca-Bofí, M. Vorländer: IHTApark. Multi-detailed 3D architectural model for sound perception research in Virtual Reality [Data set]. Zenodo, 2021. http://doi.org/10.5281/zenodo.4629760. [Google Scholar]
  66. P. Gablenz, U. Kowalk, J. Bitzer, M. Meis, I. Holube: Individual hearing aid benefit in real life evaluated using ecological momentary. Trends in Hearing 25 (2021) 1–18. https://doi.org/10.1177/2331216521990288. [Google Scholar]
  67. C. Kirsch, J. Poppitz, T. Wendt, S. van de Par, S.D. Ewert: Spatial resolution of late reverberation in virtual acoustic environments, Trends in Hearing 25 (2021) 233121652110549. https://doi.org/10.1177/23312165211054924. [CrossRef] [Google Scholar]
  68. C. Kirsch, J. Poppitz, T. Wendt, S. van de Par, S.D. Ewert: Computationally efficient spatial rendering of late reverberation in virtual acoustic environments, in: 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA). 2021, pp. 1–8. https://doi.org/10.1109/I3DA48870.2021.9610896. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.