Open Access
Issue |
Acta Acust.
Volume 6, 2022
|
|
---|---|---|
Article Number | 56 | |
Number of page(s) | 19 | |
Section | Noise Control | |
DOI | https://doi.org/10.1051/aacus/2022050 | |
Published online | 06 December 2022 |
- D. Tonon, E.M.T. Moers, A. Hirschberg: Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination. Journal of Sound and Vibration 332, 7 (2013) 1654–1673. https://doi.org/10.1016/j.jsv.2012.11.024. [CrossRef] [Google Scholar]
- L. Hu, Y. Shi, Q. Yang, G. Song: Sound reduction at a target point inside an enclosed cavity using particle dampers. Journal of Sound and Vibration 384 (2016) 45–55. https://doi.org/10.1016/j.jsv.2016.08.016. [CrossRef] [Google Scholar]
- R. Aslan, O. Turan: An acoustic structure design supported by shear thickening fluid for sound absorption. Applied Acoustics 182 (2021) 108–257. https://doi.org/10.1016/j.apacoust.2021.108257. [CrossRef] [Google Scholar]
- U. Ingard, V.K. Singhal: Effect of flow on the acoustic resonances of an open – ended duct. The Journal of the Acoustical Society of America 58, 4 (1975) 788–793. https://doi.org/10.1121/1.380751. [CrossRef] [Google Scholar]
- D. Bechert: Sound absorption caused by vorticity shedding, demonstrated with a jet flow. Journal of Sound and Vibration 70, 3 (1980) 389–405. https://doi.org/10.1016/0022-460X(80)90307-7. [CrossRef] [Google Scholar]
- P. Morse, U. Ingard: Theoretical Acoustics. Princeton University Press, 1986. ISBN: 9780691024011. [Google Scholar]
- M.S. Howe: Damping of sound and vibration by flow nonlinearity in the apertures of a perforated elastic screen. IMA Journal of Applied Mathematics 55, 3 (1995) 221–242. https://doi.org/10.1093/imamat/55.3.221. [CrossRef] [Google Scholar]
- G. Hofmans, R. Boot, P. Durrieu, Y. Auregan, A. Hirschberg: Aeroacoustic response of a slit-shaped diaphragm in a pipe at low Helmholtz number, 1: Quasi-steady results. Journal of Sound and Vibration 244, 1 (2001) 35–56. https://doi.org/10.1006/jsvi.2000.3457. [CrossRef] [Google Scholar]
- D. Zhao, X.Y. Li: A review of acoustic dampers applied to combustion chambers in aerospace industry. Progress in Aerospace Sciences 74 (2015) 114–130. https://doi.org/10.1016/j.paerosci.2014.12.003. [CrossRef] [Google Scholar]
- Z. Zuti, C. Shuping, W. Huawei, L. Xiaohui, D. Jia, Z. Yuquan: The approach on reducing the pressure pulsation and vibration of seawater piston pump through integrating a group of accumulators. Ocean Engineering 173 (2019) 319–330. https://doi.org/10.1016/j.oceaneng.2018.12.078. [CrossRef] [Google Scholar]
- B. Liu, L. Yang: Transmission of low-frequency acoustic waves in seawater piping systems with periodical and adjustable Helmholtz resonator. Journal of Marine Science and Engineering 5 (2017) 4. https://doi.org/10.3390/jmse5040056. [CrossRef] [Google Scholar]
- K.L. Coakley: Bellows accumulators for 8000 psi hydraulic systems, in Aero. Tech. Conf. Expos., SAE International, 1985. https://doi.org/10.4271/851914. [Google Scholar]
- G. Hu, L. Tang, X. Cui: On the modelling of membrane-coupled Helmholtz resonator and its application in acoustic metamaterial system. Mechanical Systems and Signal Processing 132 (2019) 595–608. https://doi.org/10.1016/j.ymssp.2019.07.017. [CrossRef] [Google Scholar]
- M.H. Kurdi, G. Scott Duncan, S.S. Nudehi: Optimal design of a Helmholtz resonator with a flexible end plate. The Journal of Vibration and Acoustics 136 (2014) 3. https://doi.org/10.1115Z1.4026849. [CrossRef] [Google Scholar]
- S.S. Nudehi, G.S. Duncan, U. Farooq: Modelling and experimental investigation of a Helmholtz resonator with a flexible plate. The Journal of Vibration and Acoustics 135 (2013) 4. https://doi.org/10.1115/1.4023810. [CrossRef] [Google Scholar]
- W. Frommhold, H. Fuchs, S. Sheng: Acoustic performance of membrane absorbers. Journal of Sound and Vibration 170, 5 (1994) 621–636. https://doi.org/10.1006/jsvi.1994.1091. [Google Scholar]
- M. Kurdi, S. Nudehi, G.S. Duncan: Tailoring plate thickness of a Helmholtz resonator for improved sound attenuation, in Ser. Int. Design Eng. Techn. Conf. Comput. Inf. Eng. Conf. 8: 28th Conf. Mech. Vib. Noise, Aug. 2016. https://doi.org/10.1115/DETC2016-59302. [Google Scholar]
- M. Khairuddin, M. Said, A. Dahlan, K. Kadir: Review on resonator and muffler configuration acoustics. Archives of Acoustics 43 (2018) 3. [Google Scholar]
- C. Cai, C.M. Mak: Acoustic performance of different Helmholtz resonator array configurations. Applied Acoustics 130 (2018) 204–209. https://doi.org/10.1016/j.apacoust.2017.09.026. [CrossRef] [Google Scholar]
- D. Wu, N. Zhang, C.M. Mak, C. Cai: Hybrid noise control using multiple Helmholtz resonator arrays. Applied Acoustics 143 (2019) 31–37. https://doi.org/10.1016/j.apacoust.2018.08.023. [CrossRef] [Google Scholar]
- M.L. Munjal, A.G. Doige: Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element. Journal of Sound and Vibration 141, 2 (1990) 323–333. https://doi.org/10.1016/0022-460X(90)90843-0. [CrossRef] [Google Scholar]
- S. Griffin, S.A. Lane, S. Huybrechts: Coupled Helmholtz resonators for acoustic attenuation. The Journal of Vibration and Acoustics 123, 1 (2000) 11–17. https://doi.org/10.1115Z1.1320812. [Google Scholar]
- M. Oblak, M. Pirnat, M. Boltezar: An impedance tube submerged in a liquid for the low-frequency transmission-loss measurement of a porous material. Applied Acoustics 139 (2018) 203–212. https://doi.org/10.1016/j.apacoust.2018.04.014. [CrossRef] [Google Scholar]
- J. Gong, Z. Jiang, L. Xuan, B. Ying, W. Peng: Numerical analysis of the transmission loss of water Muffler according to the two-load method. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 234, 20 (2020) 3982–3991. https://doi.org/10.1177/0954406220919464. [CrossRef] [Google Scholar]
- H. Ortwig: Experimental and analytical vibration analysis in fluid power systems. Int. J. Solids Struct. 42, 21 (2005) 5821–5830. https://doi.org/10.1016/j.ijsolstr.2005.03.028. [CrossRef] [Google Scholar]
- H.H. Hubdard: Aeroacoustics of flight vehicles: theory and practice, Vol 2: Noise Control, NASA, 1991. [Google Scholar]
- S. Allam, M. Abom: Investigation of damping and radiation using full plane wave decomposition in ducts. Journal of Sound and Vibration 292, 3 (2006) 519–534. https://doi.org/10.1016/j.jsv.2005.08.016. [CrossRef] [Google Scholar]
- J. Golliard, Y. Auregan, T. Humbert: Experimental study of plane wave propagation in a corrugated pipe: Linear regime of acoustic-flow interaction. Journal of Sound and Vibration 472 (2020) 115158. https://doi.org/10.1016/j.jsv.2019.115158. [CrossRef] [Google Scholar]
- M. Junger, D. Feit: Sound, structures, and their interaction. MIT Press, 1972. [Google Scholar]
- M. Prek: Wavelet analysis of sound signal in fluid-filled viscoelastic pipes. The Journal of Fluids 19, 1 (2004) 63–72. https://doi.org/10.1016/j.jfluidstructs.2003.09.003. [Google Scholar]
- M. Munjal: Ducts and Mufflers. John Wiley & Sons, 1987. ISBN 0-471-84738-0. [Google Scholar]
- M.J. Lighthill: Waves in Fluids. Cambridge University Press, 1978. ISBN 0521292336. [Google Scholar]
- S.H. Jang, J.G. Ih: On the multiple microphone method for measuring in-duct acoustic properties in the presence of mean flow. Journal of the Acoustical Society of America 103, 3 (1998) 1520–1526. https://doi.org/10.1121/1.421289. [CrossRef] [Google Scholar]
- C.M.J. Moonen, N.P. Waterson, N.R. Kemper, D.M.J. Smeulders: Experimental study of resonance in water circuit with mixed rigid and flexible hosing, in Proc. 11th Int. Conf. Flow-Ind. Vib., The Hague, The Netherlands: FIV, 2016. [Google Scholar]
- S. Timoshenko, S. Woinowsky-Krieger: Theory of plates and shells (Engineering Mechanics Series). McGraw-Hill, 1959. [Google Scholar]
- W.C. Young, R.G. Budynas: Roark’s Formulas for Stress and Strain. McGraw-Hill Education, 2001. [Google Scholar]
- R.H. Plaut: A generalized Reissner theory for large axisymmetric deflections of circular plates. Journal of Applied Mechanics 81 (2013) 3. https://doi.org/10.1115/1.4024413. [Google Scholar]
- A. Lefebvre, G.P. Scavone: Characterization of woodwind instrument toneholes with the finite element method. Journal of the Acoustical Society of America 131, 4 (2012) 3153–3163. https://doi.org/10.1121/1.3685481. [CrossRef] [PubMed] [Google Scholar]
- V. Dubos, J. Kergomard, A. Khettabi, J. Dalmont, D. Keefe, C. Nederveen: Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85 (1999) 153–169. https://doi.org/10.1016/j.apacoust.2017.09.026. [Google Scholar]
- J. Kergomard, A. Garcia: Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration 114, 3 (1987) 465–479. https://doi.org/10.1016/S0022-460X(87)80017-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.