Issue |
Acta Acust.
Volume 6, 2022
Topical Issue - Aeroacoustics: state of art and future trends
|
|
---|---|---|
Article Number | 48 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/aacus/2022043 | |
Published online | 25 October 2022 |
- F. Czwielong, S. Floss, M. Kaltenbacher, S. Becker: Influence of a micro-perforated duct absorber on sound emission and performance of axial fans. Applied Acoustics 174 (2021) 107746. [CrossRef] [Google Scholar]
- J. Tian, H. Ouyang, Y. Wu: Experimental and numerical study on aerodynamic noise of outdoor unit of room air conditioner with different grilles. International Journal of Refrigeration 32, 5 (2009) 1112–1122. [CrossRef] [Google Scholar]
- R. Arndt: Effect of leading edge serrations on noise radiation from a model rotor, in Society of Naval Architects and Marine Engineers, and US Navy, Advanced Marine Vehicles Meeting, July 17–19, 1972, Annapolis, Maryland, USA, 655. [Google Scholar]
- J.A. Feinerman, S. Koushik, F.H. Schmitz, Effect of leading-edge serrations on helicopter Blade-Vortex interaction noise, Journal of the American Helicopter Society 62, 3 (2017) 1–11. [CrossRef] [Google Scholar]
- T.M. Biedermann, P. Czeckay, T.F. Geyer, F. Kameier, C.O. Paschereit: Effect of inflow conditions on the noise reduction through leading edge serrations. AIAA Journal 57, 9 (2019) 4104–4109. [CrossRef] [Google Scholar]
- F. Krömer, F. Czwielong, S. Becker: Experimental investigation of the sound emission of skewed axial fans with leading-edge serrations. AIAA Journal 57, 12 (2019) 5182–5196. [CrossRef] [Google Scholar]
- T.M. Biedermann, P. Czeckay, N. Hintzen, F. Kameier, C.O. Paschereit: Applicability of aeroacoustic scaling laws of leading edge serrations for rotating applications. Acoustics 2, 3 (2020) 579–594. [CrossRef] [Google Scholar]
- A. Corsini, G. Delibra, A.G. Sheard: On the role of leading-edge bumps in the control of stall onset in axial fan blades. Journal of Fluids Engineering 135, 8 (2013) 081104. [CrossRef] [Google Scholar]
- R.C. Chanaud, N. Kong, R.B. Sitterding: Experiments on porous blades as a means of reducing fan noise. The Journal of the Acoustical Society of America 59, 3 (1976) 564–575. [CrossRef] [Google Scholar]
- S. Lee: Reduction of blade-vortex interaction noise through porous leading edge. AIAA Journal 32, 3 (1994) 480–488. [CrossRef] [Google Scholar]
- C. Ocker, T.F. Geyer, F. Czwielong, F. Krömer, W. Pannert, M. Merkel, S. Becker: Permeable leading edges for airfoil and fan noise reduction in disturbed inflow. AIAA Journal 59, 12 (2021) 4969–4986. [CrossRef] [Google Scholar]
- K. Bamberger, T. Carolus: Optimization of axial fans with highly swept blades with respect to losses and noise reduction. Noise Control Engineering Journal 60, 6 (2012) 716–725. [CrossRef] [Google Scholar]
- G. Herold, F. Zenger, E. Sarradj: Influence of blade skew on axial fan component noise. International Journal of Aeroacoustics 16, 4–5 (2017) 418–430. [CrossRef] [Google Scholar]
- F. Zenger, G. Herold, S. Becker: Acoustic characterization of forward-and backward-skewed axial fans under increased inflow turbulence. AIAA Journal 55, 4 (2017) 1241–1250. [CrossRef] [Google Scholar]
- F. Krömer: Sound emission of low-pressure axial fans under distorted inflow conditions, volume Reihe B: Medizin. FAU University Press, 2018. [Google Scholar]
- F. Krömer, S. Moreau, S. Becker: Experimental investigation of the interplay between the sound field and the flow field in skewed low-pressure axial fans. Journal of Sound and Vibration 442 (2019) 220–236. [CrossRef] [Google Scholar]
- A. Corsini, F. Rispoli: Using sweep to extend the stall-free operational range in axial fan rotors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 218, 3 (2004) 129–139. [CrossRef] [Google Scholar]
- P. Chaitanya, P. Joseph: Slitted leading edge profiles for the reduction of turbulence-aerofoil interaction noise. The Journal of the Acoustical Society of America 143, 6 (2018) 3494–3504. [CrossRef] [PubMed] [Google Scholar]
- P. Chaitanya, P. Joseph, L. Ayton: On the superior performance of leading edge slits over serrations for the reduction of aerofoil interaction noise, in AIAA/CEAS Aeroacoustics Conference, June 25–29, 2018, Atlanta, Georgia, USA, 3121. [Google Scholar]
- M. Cannard, P. Joseph, J. Turner, J.W. Kim, P. Chaitanya: Physical mechanisms and performance of slitted leading-edge profiles for the reduction of broadband aerofoil interaction noise. Journal of Sound and Vibration 473 (2020) 115214. [CrossRef] [Google Scholar]
- P. Chaitanya, S. Narayanan, P. Joseph, J. Kim: Leading edge serration geometries for significantly enhanced leading edge noise reductions, in 22nd AIAA/CEAS Aeroacoustics Conference, 30 May–1 June, 2016, Lyon, France, 2736. [Google Scholar]
- F. Czwielong, F. Krömer, P. Chaitanya, S. Becker: Experimental investigation of the influence of different leading edge modifications on the sound emission of axial fans downstream of a heatexchanger, in Proceedings of the 23rd International Congress on Acoustics. 2019, 1843–1850. [Google Scholar]
- F. Zenger, A. Renz, M. Becher, S. Becker: Experimental investigation of the noise emission of axial fans under distorted inflow conditions. Journal of Sound and Vibration 383 (2016) 124–145. [CrossRef] [Google Scholar]
- V. Babu: Basics of turbomachinery. Fundamentals of Propulsion, Springer, 2022, pp. 25–42. [CrossRef] [Google Scholar]
- F. Czwielong, V. Hruška, M. Bednařík, S. Becker: On the acoustic effects of sonic crystals in heat exchanger arrangements. Applied Acoustics 182 (2021) 108253. [CrossRef] [Google Scholar]
- F. Czwielong, F. Krömer, S. Becker: Experimental investigations of the sound emission of axial fans under the influence of suction-side heat exchangers, in 25th AIAA/CEAS Aeroacoustics Conference, May 20–23, 2019, Delft, The Netherlands, 2618. [Google Scholar]
- S. Schoder, C. Junger, M. Kaltenbacher: Computational aeroacoustics of the EAA benchmark case of an axial fan. Acta Acustica 4, 5 (2020) 22. [CrossRef] [EDP Sciences] [Google Scholar]
- W. Pannert, C. Maier, Rotating beamforming – motion-compensation in the frequency domain and application of high-resolution beamforming algorithms: Journal of Sound and Vibration 333, 7 (2014) 1899–1912. [CrossRef] [Google Scholar]
- S.E. Wright: The acoustic spectrum of axial flow machines. Journal of Sound and Vibration 45, 2 (1976) 165–223. [CrossRef] [Google Scholar]
- A.S.H. Lau, S. Haeri, J.W. Kim: The effect of wavy leading edges on aerofoil–gust interaction noise. Journal of Sound and Vibration 332, 24 (2013) 6234–6253. [CrossRef] [Google Scholar]
- P. Chaitanya, P. Joseph, S. Narayanan, C. Vanderwel, J. Turner, J.W. Kim, B. Ganapathisubramani: Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence–aerofoil interaction noise. Journal of Fluid Mechanics 818 (2017) 435–464. [CrossRef] [Google Scholar]
- M.J. Lighthill, M.H.A. Newman: On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 211, 1107 (1952) 564–587. [Google Scholar]
- R. Ewert, W. Schröder: Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188, 2 (2003) 365–398. [Google Scholar]
- C. Ocker, W. Pannert: Acoustic ray method derived with the concept of analogue gravity for the calculation of the sound field due to rotating sound sources. Applied Acoustics 168 (2020) 107422. [CrossRef] [Google Scholar]
- C. Ocker, W. Pannert: Calculation of the cross spectral matrix with Daniell’s method and application to acoustical beamforming. Applied Acoustics 120 (2017) 59–69. [CrossRef] [Google Scholar]
- P. Sijtsma: CLEAN Based on Spatial Source Coherence. International Journal of Aeroacoustics 6, 4 (2007) 357–374. [CrossRef] [Google Scholar]
- E. Sarradj: Three-dimensional acoustic source mapping with different beamforming steering vector formulations. Advances in Acoustics and Vibration 1–12 (2012) 2012. [Google Scholar]
- S. Wagner, R. Bareiß, G. Guidati: Wind Turbine Noise. Springer, Berlin Heidelberg, 1996. [Google Scholar]
- W.K. Blake: Mechanics of flow-induced sound and vibration, Volume 2: Complex flow-structure interactions. Academic Press Inc. 2017. [Google Scholar]
- Q. Zhou, P. Joseph: Frequency-domain method for rotor self-noise prediction. AIAA Journal 44, 6 (2006) 1197–1206. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.