Open Access
Review
Issue |
Acta Acust.
Volume 6, 2022
|
|
---|---|---|
Article Number | 47 | |
Number of page(s) | 19 | |
Section | Audio Signal Processing and Transducers | |
DOI | https://doi.org/10.1051/aacus/2022040 | |
Published online | 12 October 2022 |
- M.F. Davis: History of spatial coding. Journal of the Audio Engineering Society 51, 6 (2003) 554–569. [Google Scholar]
- M. Vorländer: Past, present and future of dummy heads, in Proceedings of Acústica, Guimarães, Portugal, 2004, pp. 13–17. [Google Scholar]
- D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society 49, 10 (2001) 904–916. [Google Scholar]
- B. Xie: Head-related transfer function and virtual auditory display. 2nd ed., J. Ross Publishing, 2013. [Google Scholar]
- M.A. Gerzon: Periphony: with-height sound reproduction. Journal of the Audio Engineering Society 21, 1 (February 1973) 2–10. [Google Scholar]
- J.S. Bamford: An analysis of ambisonic sound systems of first and second order. PhD thesis, University of Waterloo, Ontario, Canada, 1995. [Google Scholar]
- J. Daniel: Acoustic field representation, application to the transmission and the reproduction of complex sound environments in a multimedia context. PhD thesis, Université de Paris, Paris, France, 2000. [Google Scholar]
- D.G. Malham, A. Myatt: 3-D sound spatialization using ambisonic techniques. Computer Music Journal 19, 4 (1995) 58–70. [CrossRef] [Google Scholar]
- M.A. Poletti: The design of encoding functions for stereophonic and polyphonic sound systems. Journal of the Audio Engineering Society 44, 11 (1996) 948–963. [Google Scholar]
- T.D. Abhayapala, D.B. Ward: Theory and design of high order sound field microphones using spherical microphone array, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, Florida, USA, 2002, pp. 1949–1952. [Google Scholar]
- J. Meyer, G. Elko: A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, Florida, USA, 2002, pp. II-1781–II-1784. [Google Scholar]
- M. Vorländer: Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Springer, 2020. [Google Scholar]
- J. Blauert, J. Braasch: The technology of binaural understanding. Springer, 2020. [CrossRef] [Google Scholar]
- H. Hacihabiboglu, E. De Sena, Z. Cvetkovic, J. Johnston, J.O. Smith III: Perceptual spatial audio recording, simulation, and rendering: an overview of spatial-audio techniques based on psychoacoustics. IEEE Signal Processing Magazine 34, 3 (2017) 36–54. [CrossRef] [Google Scholar]
- W. Zhang, P.N. Samarasinghe, H. Chen, T.D. Abhayapala: Surround by sound: a review of spatial audio recording and reproduction. Applied Sciences 7, 3 (2017) 532. [CrossRef] [Google Scholar]
- F. Zotter, M. Frank: Ambisonics: a practical 3D audio theory for recording, studio production, sound reinforcement, and virtual reality. Springer Nature, 2019. [CrossRef] [Google Scholar]
- D.P. Jarrett, E.A.P. Habets, P.A. Naylor: Theory and applications of spherical microphone array processing. Springer-Verlag, Berlin, 2017. [CrossRef] [Google Scholar]
- B. Rafaely, Fundamentals of spherical array processing. Springer-Verlag, Berlin, 2019. [CrossRef] [Google Scholar]
- J. Herre, J. Hilpert, A. Kuntz, J. Plogsties: MPEG-H 3D audio – the new standard for coding of immersive spatial audio. IEEE Journal of Selected Topics in Signal Processing 9, 5 (2015) 770–779. [CrossRef] [Google Scholar]
- V. Pulkki, S. Delikaris-Manias, A. Politis: Parametric time-frequency domain spatial audio. John Wiley & Sons, 2017. [CrossRef] [Google Scholar]
- K. Kowalczyk, O. Thiergart, M. Taseska, G. Del Galdo, V. Pulkki, E.P.A. Habets: Parametric Spatial Sound Processing: A flexible and efficient solution to sound scene acquisition, modification, and reproduction. IEEE Signal Processing Magazine 32, 2 (2015) 31–42. [CrossRef] [Google Scholar]
- V.R. Algazi, R.O. Duda: Headphone-based spatial sound. IEEE Signal Processing Magazine 28, 1 (2011) 33–42. [CrossRef] [Google Scholar]
- K. Sunder, J. He, E.L. Tan, W.-S. Gan: Natural sound rendering for headphones: integration of signal processing techniques. IEEE Signal Processing Magazine 32, 2 (2015) 100–113. [CrossRef] [Google Scholar]
- D.R. Begault, L.J. Trejo: 3-D sound for virtual reality and multimedia. NASA, Ames Research Center, Moffett Field, California, 2000, pp. 132–136. [Google Scholar]
- P. Milgram, H. Takemura, A. Utsumi, F. Kishino: Augmented reality: a class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, International Society for Optics and Photonics, 1995, pp. 282–292. [CrossRef] [Google Scholar]
- V. Tourbabin, B. Rafaely: Analysis of distortion in audio signals introduced by microphone motion, in 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 2016, pp. 998–1002. [Google Scholar]
- A. Alexandridis, A. Griffin, A. Mouchtaris: Capturing and reproducing spatial audio based on a circular microphone array. Journal of Electrical and Computer Engineering 2013 (2013) 1–16. [CrossRef] [Google Scholar]
- I. Toshima, H. Uematsu, T. Hirahara: A steerable dummy head that tracks three-dimensional head movement: TeleHead. Acoustical Science and Technology 24 (09 2003) 327–329. [CrossRef] [Google Scholar]
- Zylia: Zylia ZM-1 microphone. Accessed on December 6, 2021. https://www.zylia.co/ [Google Scholar]
- T. Lokki: Subjective comparison of four concert halls based on binaural impulse responses. Acoustical Science and Technology 26, 2 (2005) 200–203. [CrossRef] [Google Scholar]
- T. Lokki, J. Pätynen, S. Tervo, S. Siltanen, L. Savioja: Engaging concert hall acoustics is made up of temporal envelope preserving reflections. The Journal of the Acoustical Society of America 129, 6 (2011) EL223–EL228. [CrossRef] [PubMed] [Google Scholar]
- O. Axelsson, M.E. Nilsson, B. Berglund: A principal components model of soundscape perception. The Journal of the Acoustical Society of America 128, 5 (2010) 2836–2846. [CrossRef] [PubMed] [Google Scholar]
- B. Boren, M. Musick, J. Grossman, A. Roginska: I hear NY4D: hybrid acoustic and augmented auditory display for urban soundscapes, in International Conference on Auditory Display, New York, NY, USA, 2014. [Google Scholar]
- A. Leudar: An alternative approach to 3D audio recording and reproduction. Divergence Press 3, 1 (2014). [Google Scholar]
- Eden Project: Rainforest at night: heart of darkness. Accessed on December 6, 2021. https://web.archive.org/web/20110719132826/http://www.edenproject.com/come-and-visit/whats-on/heart-of-darkness.php [Google Scholar]
- H. Lee: Multichannel 3D microphone arrays: a review. Journal of the Audio Engineering Society 69, 1/2 (2021) 5–26. [CrossRef] [Google Scholar]
- B&K: Binaural microphone B&K type 4101-B. Accessed on December 6, 2021. https://www.bksv.com/en/transducers/acoustic/binaural/binaural-microphone?tab=overview [Google Scholar]
- 3Dio: Free-space binaural microphone. Accessed on December 6, 2021. https://3diosound.com/products/free-space-binaural-microphone [Google Scholar]
- Sennheiser: Sennheiser AMBEO VR mic. Accessed on December 6, 2021. https://en-us.sennheiser.com/microphone-3d-audio-ambeo-vr-mic [Google Scholar]
- em32 Eigenmike array. mhAcoustics, 25 Summit Ave, Summit, NJ 07901, USA. Accessed on December 6, 2021. https://mhacoustics.com/products [Google Scholar]
- R. Duraiswami, D. Zotkin, Z. Li, E. Grassi, N. Gumerov, L. Davis: High-order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues, in The 119th Convention of Audio Engineering Society, vol. 3, New York, NY, USA, 01 2005, pp. 1–16. [Google Scholar]
- M. Noisternig, T. Musil, A. Sontacchi, R. Holdrich: 3D binaural sound reproduction using a virtual ambisonic approach, in IEEE International Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2003. VECIMS ‘03. 2003, IEEE,2003, pp. 174–178. [Google Scholar]
- M. Fallahi, M. Hansen, S. Doclo, S. van de Par, D. Püschel, M. Blau: Evaluation of head-tracked binaural auralizations of speech signals generated with a virtual artificial head in anechoic and classroom environments. Acta Acustica 5 (2021) 30. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Madmoni, J. Donley, V. Tourbabin, B. Rafaely: Beamforming-based binaural reproduction by matching of binaural signals, in Audio Engineering Society Conference: International Conference on Audio for Virtual and Augmented Reality, 2020. [Google Scholar]
- S. Sakamoto, J. Kodama, S. Hongo, T. Okamoto, Y. Iwaya, Y. Suzuki: A 3D sound-space recording system using spherical microphone array with 252ch microphones, in 20th International Congress on Acoustics 2010, ICA 2010 – Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society, Sydney, Australia, 2010, pp. 3032–3035. [Google Scholar]
- A. Roginska, P. Geluso: Immersive sound: the art and science of binaural and multi-channel audio, Taylor & Francis, 2017. [Google Scholar]
- S. Werner, F. Klein, T. Mayenfels, K. Brandenburg: A summary on acoustic room divergence and its effect on externalization of auditory events, in 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, 2016, pp. 1–6. [Google Scholar]
- W.O. Brimijoin, A.W. Boyd, M.A. Akeroyd: The contribution of head movement to the externalization and internalization of sounds. PloS one 8, 12 (2013) e83068. [CrossRef] [PubMed] [Google Scholar]
- F.L. Wightman, D.J. Kistler: The importance of head movements for localizing virtual auditory display objects, in International Conference on Auditory Display, Georgia Institute of Technology, 1994. [Google Scholar]
- M.-V. Laitinen, T. Pihlajamäki, S. Lösler, V. Pulkki: Influence of resolution of head tracking in synthesis of binaural audio, in Audio Engineering Society Convention 132, Audio Engineering Society, 2012. [Google Scholar]
- P. Stitt, E. Hendrickx, J.-C. Messonnier, B. Katz: The influence of head tracking latency on binaural rendering in simple and complex sound scenes, in Audio Engineering Society Convention 140, Audio Engineering Society, 2016. [Google Scholar]
- I. Engel, D.L. Alon, P.W. Robinson, R. Mehra: The effect of generic headphone compensation on binaural renderings, in Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio, Audio Engineering Society, 2019. [Google Scholar]
- A. Lindau, F. Brinkmann: Perceptual evaluation of headphone compensation in binaural synthesis based on non-individual recordings. Journal of the Audio Engineering Society 60, 1/2 (2012) 54–62. [Google Scholar]
- D. Pralong, S. Carlile: The role of individualized headphone calibration for the generation of high fidelity virtual auditory space, The Journal of the Acoustical Society of America 100, 6 (1996) 3785–3793. [CrossRef] [PubMed] [Google Scholar]
- F. Brinkmann, A. Lindau, S. Weinzierl: On the authenticity of individual dynamic binaural synthesis. The Journal of the Acoustical Society of America 142, 4 (2017) 1784–1795. [CrossRef] [PubMed] [Google Scholar]
- Z. Ben-Hur, D.L. Alon, R. Mehra, B. Rafaely: Binaural reproduction based on bilateral ambisonics and ear-aligned HRTFs. IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021) 901–913. [CrossRef] [Google Scholar]
- D. Griesinger: General overview of spatial impression, envelopment, localization, and externalization, in Audio Engineering Society Conference: 15th International Conference: Audio, Acoustics & Small Spaces, Copenhagen, Denmark, 1998. [Google Scholar]
- T. Hidaka, T. Okano, L. Beranek: Interaural cross correlation (IACC) as a measure of spaciousness and envelopment in concert halls. The Journal of the Acoustical Society of America 92, 4 (1992) 2469–2469. [CrossRef] [Google Scholar]
- H. Lee: Capturing 360° audio using an equal segment microphone array (ESMA). Journal of the Audio Engineering Society 67, 1/2 (2019) 13–26. [CrossRef] [Google Scholar]
- T. Okano, L.L. Beranek, T. Hidaka: Relations among interaural cross-correlation coefficient (IACCE), lateral fraction (LFE), and apparent source width (ASW) in concert halls. The Journal of the Acoustical Society of America 104, 1 (1998) 255–265. [CrossRef] [PubMed] [Google Scholar]
- A. Lindau, V. Erbes, S. Lepa, H.-J. Maempel, F. Brinkman, S. Weinzierl: A spatial audio quality inventory (SAQI). Acta Acustica united with Acustica 100, 5 (2014) 984–994. [CrossRef] [Google Scholar]
- G. Lorho: Individual vocabulary profiling of spatial enhancement systems for stereo headphone reproduction, in Audio Engineering Society Convention 119, Audio Engineering Society, 2005. [Google Scholar]
- C. Millns, H. Lee: An investigation into spatial attributes of 360° microphone techniques for virtual reality, in Audio Engineering Society Convention 144, Milan, Italy, 2018. [Google Scholar]
- G. Reardon, A. Genovese, G. Zalles, P. Flanagan, A. Roginska: Evaluation of binaural renderers: multidimensional sound quality assessment, in Audio Engineering Society Conference: International Conference on Audio for Virtual and Augmented Reality, Redmons, WA, USA, 2018. [Google Scholar]
- L.S.R. Simon, N. Zacharov, B.F.G. Katz: Perceptual attributes for the comparison of head-related transfer functions. The Journal of the Acoustical Society of America 140, 5 (2016) 3623–3632. [CrossRef] [PubMed] [Google Scholar]
- N. Zacharov, T. Pedersen, C. Pike: A common lexicon for spatial sound quality assessment – latest developments, in 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 2016, pp. 1–6. [Google Scholar]
- A. Lindau, S. Weinzierl: Assessing the plausibility of virtual acoustic environments. Acta Acustica united with Acustica 98, 5 (2012) 804–810. [CrossRef] [Google Scholar]
- R.S. Pellegrini: Quality assessment of auditory virtual environments, in International Conference on Auditory Display, Helsinki, Finland, 2001. [Google Scholar]
- J. Blauert: Spatial hearing: the psychophysics of human sound localization. MIT Press, 1997. [Google Scholar]
- R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America 136 (8 2014) 791–802. [CrossRef] [PubMed] [Google Scholar]
- V. Best, R. Baumgartner, M. Lavandier, P. Majdak, N. Kopčo: Sound externalization: a review of recent research. Trends in Hearing 24 (2020) 1–14. [Google Scholar]
- S. Li, R. Baumgartner, J. Peissig: Modeling perceived externalization of a static, lateral sound image. Acta Acustica 4, 5 (2020) 21. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans: An ideal-observer model of human sound localization. Biological Cybernetics 108, 2 (2014) 169–181. [CrossRef] [PubMed] [Google Scholar]
- R. Baumgartner, P. Majdak: Decision making in auditory externalization perception: model predictions for static conditions, Acta Acustica 5 (2021) 59. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Rumsey, S. Zieliński, R. Kassier: On the relative importance of spatial and timbral fidelities in judgments of degraded multichannel audio quality. The Journal of the Acoustical Society of America 118, 2 (2005) 968–976. [CrossRef] [PubMed] [Google Scholar]
- I. Ananthabhotla, V.K. Ithapu, W.O. Brimijoin: A framework for designing head-related transfer function distance metrics that capture localization perception. JASA Express Letters 1, 4 (2021) 044401. [CrossRef] [PubMed] [Google Scholar]
- P. Majdak, R. Baumgartner: Computational models for listener-specific predictions of spatial audio quality, in EAA Spatial Audio Signal Processing Symposium, Paris, France, 2019, pp. 155–159. [Google Scholar]
- T. Robotham, O.S. Rummukainen, J. Herre, E.A.P. Habets: Evaluation of binaural renderers in virtual reality environments: platform and examples, in Proc. of the 145th AES Convention, New York, NY, USA, 2018. [Google Scholar]
- T. Robotham, O.S. Rummukainen, M. Kurz, M. Eckert, E.A.P. Habets: Comparing direct and indirect methods of audio quality evaluation in virtual reality scenes of varying complexity. IEEE Transactions on Visualization and Computer Graphics 28, 5 (2022) 2091–2101. [CrossRef] [PubMed] [Google Scholar]
- B.I. Băcilă, H. Lee: Listener-position and orientation dependency of auditory perception in an enclosed space: elicitation of salient attributes. Applied Sciences 11, 4 (2021) 1–24. [Google Scholar]
- C. Schneiderwind, A. Neidhardt: Perceptual differences of position dependent room acoustics in a small conference room, in The International Symposium on Room Acoustics, Amsterdam, Netherlands, 2019. [Google Scholar]
- V.R. Algazi, R.O. Duda, D.M. Thompson: Motion-tracked binaural sound. Journal of the Audio Engineering Society 52, 11 (2004) 1142–1156. [Google Scholar]
- A. Lindau, S. Roos: Perceptual evaluation of discretization and interpolation for motion-tracked binaural (MTB-) recordings, in Proceedings of the 26th Tonmeistertagungm VDT International Convention, Leipzig, Germany, 2010, pp. 680–701. [Google Scholar]
- S. Nagel, P. Jax: Dynamic binaural cue adaptation, in 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), IEEE, 2018, pp. 96–100. [Google Scholar]
- P.G. Craven, M.A. Gerzon: Coincident microphone simulation covering three dimensional space and yielding various directional outputs, 1977. US Patent 4,042,779 [Google Scholar]
- P.B. Fellgett: Ambisonic reproduction of directionality in surround-sound systems. Nature 252, 5484 (1974) 534–538. [CrossRef] [Google Scholar]
- M.A. Gerzon: The design of precisely coincident microphone arrays for stereo and surround sound, in Audio Engineering Society Convention 50, Audio Engineering Society, 1975. [Google Scholar]
- J.-M. Jot, V. Larcher, J.-M. Pernaux: A comparative study of 3-D audio encoding and rendering techniques, in Audio Engineering Society Conference: 16th International Conference: Spatial Sound Reproduction, Arktikum, Rovaniemi, Finland, 1999. [Google Scholar]
- M.J. Evans, J.A.S. Angus, A.I. Tew: Analyzing head-related transfer function measurements using surface spherical harmonics. The Journal of the Acoustical Society of America 104, 4 (1998) 2400–2411. [CrossRef] [Google Scholar]
- B. Rafaely, A. Avni: Interaural cross correlation in a sound field represented by spherical harmonics. The Journal of the Acoustical Society of America 127, 2 (2010) 823–828. [CrossRef] [PubMed] [Google Scholar]
- A. Sontacchi, M. Noisternig, P. Majdak, R. Holdrich: An objective model of localisation in binaural sound reproduction systems, in Audio Engineering Society Conference: 21st International Conference: Architectural Acoustics and Sound Reinforcement, Audio Engineering Society, 2002. [Google Scholar]
- Z. Ben-Hur, D. Alon, R. Mehra, B. Rafaely: Binaural reproduction using bilateral Ambisonics. Journal of the Audio Engineering Society, in AES International Conference on Audio for Virtual and Augmented Reality (AVAR), Redmond, WA, USA, August 2020, pp. 1–6. [Google Scholar]
- A. Avni, J. Ahrens, M. Geier, S. Spors, H. Wierstorf, B. Rafaely: Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution. The Journal of the Acoustical Society of America 133, 5 (2013) 2711–2721. [CrossRef] [PubMed] [Google Scholar]
- T. Lübeck, H. Helmholz, J.M. Arend, C. Pörschmann, J. Ahrens: Perceptual evaluation of mitigation approaches of impairments due to spatial undersampling in binaural rendering of spherical microphone array data. Journal of the Audio Engineering Society 68, 6 (2020) 428–440. [CrossRef] [Google Scholar]
- M. Zaunschirm, C. Schörkhuber, R. Höldrich: Binaural rendering of ambisonic signals by head-related impulse response time alignment and a diffuseness constraint. The Journal of the Acoustical Society of America 143, 6 (2018) 3616–3627. [CrossRef] [PubMed] [Google Scholar]
- em32 Eigenmike microphone array release notes (v17. 0). mhAcoustics, 25 Summit Ave, Summit, NJ 07901, USA, 2013. [Google Scholar]
- B. Rafaely: Plane-wave decomposition of the sound field on a sphere by spherical convolution. The Journal of the Acoustical Society of America 116, 4 (2004) 2149–2157. [Google Scholar]
- B. Rafaely, B. Weiss, E. Bachmat: Spatial aliasing in spherical microphone arrays. IEEE Transactions on Signal Processing 55, 3 (2007) 1003–1010. [CrossRef] [Google Scholar]
- D.L. Alon, B. Rafaely: Beamforming with optimal aliasing cancellation in spherical microphone arrays. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 1 (2016) 196–210. [CrossRef] [Google Scholar]
- D.L. Alon, B. Rafaely: Spatial decomposition by spherical array processing, in Parametric Time-Frequency Domain Spatial Audio, Chapter 2, V. Pulkki, S. Delikaris-Manias, A. Politis, Eds., Wiley.2017, pp. 25–47. [CrossRef] [Google Scholar]
- A. Wabnitz, N. Epain, C.T. Jin, A frequency-domain algorithm to upscale ambisonic sound scenes, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp. 385–388. [Google Scholar]
- A. Wabnitz, N. Epain, A. McEwan, C. Jin, Upscaling Ambisonic sound scenes using compressed sensing techniques, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2011, pp. 1–4. [Google Scholar]
- P.K.T. Wu, N. Epain, C. Jin: A super-resolution beamforming algorithm for spherical microphone arrays using a compressed sensing approach, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 649–653. [Google Scholar]
- N. Murata, S. Koyama, N. Takamune, H. Saruwatari: Sparse sound field decomposition with parametric dictionary learning for super-resolution recording and reproduction, in IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 2015, pp. 69–72. [Google Scholar]
- G. Routray, R.M. Hegde: Sparse plane-wave decomposition for upscaling ambisonic signals, in 2020 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 2020, pp. 1–5. [Google Scholar]
- G. Routray, S. Basu, P. Baldev, R.M. Hegde: Deep-sound field analysis for upscaling ambisonic signals, in EAA Spatial Audio Signal Processing Symposium, Paris, France, 2019, pp. 1–6. [Google Scholar]
- L. Zhang, X. Wang, R. Hu, D. Li, W. Tu: Estimation of spherical harmonic coefficients in sound field recording using feed-forward neural networks. Multimedia Tools and Applications 80 (2021) 6187–6202. [CrossRef] [Google Scholar]
- L. Zhang, X. Wang, R. Hu, D. Li, W. Tu: Optimization of sound fields reproduction based higher-order ambisonics (HOA) using the generative adversarial network (GAN). Multimedia Tools and Applications 80, 2 (2021) 2205–2220. [CrossRef] [Google Scholar]
- Z. Ben-Hur, J. Sheaffer, B. Rafaely: Joint sampling theory and subjective investigation of plane-wave and spherical harmonics formulations for binaural reproduction. Applied Acoustics 134 (2018) 138–144. [CrossRef] [Google Scholar]
- Z. Ben-Hur, F. Brinkmann, J. Sheaffer, S. Weinzierl, B. Rafaely: Spectral equalization in binaural signals represented by order-truncated spherical harmonics. The Journal of the Acoustical Society of America 141, 6 (2017) 4087–4096. [CrossRef] [PubMed] [Google Scholar]
- C. Hold, H. Gamper, V. Pulkki, N. Raghuvanshi, I.J. Tashev: Improving binaural ambisonics decoding by spherical harmonics domain tapering and coloration compensation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 261–265. [Google Scholar]
- C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural rendering of ambisonic signals via magnitude least squares, in Fortschritte der Akustik (DAGA), München, Germany, 2018, pp. 339–342. [Google Scholar]
- F. Brinkmann, S. Weinzierl: Comparison of head-related transfer functions pre-processing techniques for spherical harmonics decomposition, in Audio Engineering Society Conference: International Conference on Audio for Virtual and Augmented Reality, Redmons, WA, USA, 2018. [Google Scholar]
- L. Birnie, T. Abhayapala, P. Samarasinghe, V. Tourbabin: Sound field translation methods for binaural reproduction, in IX-Degrees-of-Freedom Binaural IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2019, pp. 140–144. [Google Scholar]
- H. Lee, F. Rumsey: Level and time panning of phantom images for musical sources. Journal of the Audio Engineering Society 61, 12 (2013) 978–988. [Google Scholar]
- M. Williams, G. Le Du: Microphone array analysis for multichannel sound recording, in Audio Engineering Society Convention 107, New York, NY, USA, 1999. [Google Scholar]
- H. Wittek, G. Theile: The recording angle – based on localisation curves, in Audio Engineering Society Convention 112, Munich, Germany, 2002. [Google Scholar]
- F. Zotter, M. Frank: Efficient phantom source widening. Archives of Acoustics 38, 1 (2013) 27–37. [CrossRef] [Google Scholar]
- K. Hamasaki, K. Hiyama: Reproducing spatial impression with multichannel audio, in Audio Engineering Society Conference: 24th International Conference: Multichannel Audio, The New Reality, Banff, Alberta, Canada, 2003. [Google Scholar]
- F. Rumsey: Spatial audio, Focal Press, 2001. [Google Scholar]
- M. Kuster: Spatial correlation and coherence in reverberant acoustic fields: extension to microphones with arbitrary first-order directivity. The Journal of the Acoustical Society of America 123, 1 (2008) 154–162. [CrossRef] [PubMed] [Google Scholar]
- D. Griesinger: Reproducing low frequency spaciousness and envelopment in listening rooms, in Audio Engineering Society Convention 145, New York, NY, USA, 2018. [Google Scholar]
- C. Gribben, H. Lee: A comparison between horizontal and vertical interchannel decorrelation. Applied Sciences 7, 11 (2017) 1–21. [Google Scholar]
- C. Gribben, H. Lee: The frequency and loudspeaker-azimuth dependencies of vertical interchannel decorrelation on the vertical spread of an auditory image. Journal of the Audio Engineering Society 66, 7/8 (2018) 537–555. [CrossRef] [Google Scholar]
- H. Lee, C. Gribben: Effect of vertical microphone layer spacing for a 3D microphone array. Journal of the Audio Engineering Society 62, 12 (2014) 870–884. [Google Scholar]
- H. Wittek, G. Theile: Development and application of a stereophonic multichannel recording technique for 3D audio and VR, in 143rd International Convention of the Audio Engineering Society, Audio Engineering Society, 2017. [Google Scholar]
- H. Lee, M. Frank, F. Zotter: Spatial and timbral fidelities of binaural ambisonics decoders for main microphone array recordings, in Audio Engineering Society Conference: International Conference on Immersive and Interactive Audio, York, UK, 2019. [Google Scholar]
- A. McKeag, D.S. McGrath: Sound field format to binaural decoder with head tracking, in 6th Austrailian Regional Convention of the AES, Audio Engineering Society, 1996. [Google Scholar]
- A.M. O’Donovan, D.N. Zotkin, R. Duraiswami: Spherical microphone array based immersive audio scene rendering, in International Conference on Auditory Display,2008. [Google Scholar]
- J. Jiang, B. Xie, H. Mai: The number of virtual loudspeakers and the error for spherical microphone array recording and binaural rendering, in Audio Engineering Society Conference: International Conference on Spatial Reproduction-Aesthetics and Science, Tokyo, Japan, 2018. [Google Scholar]
- H.L. Van Trees: Optimum array processing. John Wiley & Sons, 2002. [CrossRef] [Google Scholar]
- W. Song, W. Ellermeier, J. Hald: Binaural auralization based on spherical-harmonics beamforming. The Journal of the Acoustical Society of America 123, 5 (2008) 3159–3159. [CrossRef] [Google Scholar]
- W. Song, W. Ellermeier, J. Hald: Psychoacoustic evaluation of multichannel reproduced sounds using binaural synthesis and spherical beamforming. The Journal of the Acoustical Society of America 130, 4 (2011) 2063–2075. [CrossRef] [PubMed] [Google Scholar]
- W. Song, W. Ellermeier, J. Hald: Using beamforming and binaural synthesis for the psychoacoustical evaluation of target sources in noise. The Journal of the Acoustical Society of America 123, 2 (2008) 910–924. [CrossRef] [PubMed] [Google Scholar]
- S. Spors, H. Wierstorf, M. Geier: Comparison of modal versus delay-and-sum beamforming in the context of data-based binaural synthesis, in Audio Engineering Society Convention 132, Budapest, Hungary, April 2012. [Google Scholar]
- M. Jeffet, N.R. Shabtai, B. Rafaely: Theory and perceptual evaluation of the binaural reproduction and beamforming tradeoff in the generalized spherical array beamformer. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 4 (2016) 708–718. [CrossRef] [Google Scholar]
- N.R. Shabtai, B. Rafaely: Binaural sound reproduction beamforming using spherical microphone arrays, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 101–105. [Google Scholar]
- N.R. Shabtai, B. Rafaely: Spherical array beamforming for binaural sound reproduction, in IEEE Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 2012, pp. 1–5. [Google Scholar]
- N.R. Shabtai: Optimization of the directivity in binaural sound reproduction beamforming. The Journal of the Acoustical Society of America 138, 5 (2015) 3118–3128. [CrossRef] [PubMed] [Google Scholar]
- E. Hadad, D. Marquardt, S. Doclo, S. Gannot: Theoretical analysis of binaural transfer function MVDR beamformers with interference cue preservation constraints. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 12 (2015) 2449–2464. [CrossRef] [Google Scholar]
- E. Hadad, S. Doclo, S. Gannot: The binaural LCMV beamformer and its performance analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 3 (2016) 543–558. [CrossRef] [Google Scholar]
- P. Calamia, S. Davis, C. Smalt, C. Weston: A conformal, helmet-mounted microphone array for auditory situational awareness and hearing protection, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2017, pp. 96–100. [Google Scholar]
- H. Beit-On, M. Lugasi, L. Madmoni, A. Menon, A. Kumar, J. Donley, V. Tourbabin, B. Rafaely: Audio signal processing for telepresence based on wearable array in noisy and dynamic scenes, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Singapore, 2022, accepted for publication. [Google Scholar]
- M. Blau, A. Budnik, M. Fallahi, H. Steffens, S.D. Ewert, S. Van de Par: Toward realistic binaural auralizations–perceptual comparison between measurement and simulation-based auralizations and the real room for a classroom scenario. Acta Acustica 5 (2021) 8. [CrossRef] [EDP Sciences] [Google Scholar]
- I. Ifergan, B. Rafaely: On the selection of the number of beamformers in beamforming-based binaural reproduction. EURASIP Journal on Audio, Speech and Music Processing 6 (2022) 1–17. [Google Scholar]
- D. Marelli, R. Baumgartner, P. Majdak: Efficient approximation of head-related transfer functions in subbands for accurate sound localization. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 7 (2015) 1130–1143. [Google Scholar]
- V. Pulkki: Spatial sound reproduction with directional audio coding. Journal of the Audio Engineering Society 55, 6 (2007) 503–516. [Google Scholar]
- M.M. Goodwin, J.-M. Jot: Primary-ambient signal decomposition and vector-based localization for spatial audio coding and enhancement, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii, USA, 2007, pp. I-9–I-12. [Google Scholar]
- N. Barrett, S. Berge: A new method for B-format to binaural transcoding, in Audio Engineering Society Conference: 40th International Conference: Spatial Audio: Sense the Sound of Space, Audio Engineering Society, 2010. [Google Scholar]
- S. Berge, B. Allmenndigitale, N. Barrett: High angular resolution planewave expansion, in Proceedings of the 2nd International Symposium on Ambisonics and Spherical Acoustics, Paris, France, 2010. [Google Scholar]
- O. Thiergart, E.A.P. Habets: Parametric sound acquisition using a multi-wave signal model and spatial filters, in Parametric Time-Frequency Domain Spatial Audio, V. Pulkki, S. Delikaris-Manias, A. Politis, Eds., John Wiley & Sons. 2017. [Google Scholar]
- O. Thiergart, M. Taseska, E.A.P. Habets: An informed parametric spatial filter based on instantaneous direction-of-arrival estimates. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22, 12 (2014) 2182–2196. [CrossRef] [Google Scholar]
- C.T. Jin, Y. Shiduo, F. Antonacci, A. Sarti: Perspectives on microphone array processing including sparse recovery, ray space analysis, and neural networks. Acoustical Science and Technology 41, 1 (2020) 308–317. [CrossRef] [Google Scholar]
- A. Politis, J. Vilkamo, V. Pulkki: Sector-based parametric sound field reproduction in the spherical harmonic domain. IEEE Journal of Selected Topics in Signal Processing 9, 5 (2015) 852–866. [CrossRef] [Google Scholar]
- V. Pulkki, A. Politis, G. Del Galdo, A. Kuntz: Parametric spatial audio reproduction with higher-order B-format microphone input, in Audio Engineering Society Convention 134, Audio Engineering Society, 2013. [Google Scholar]
- A. Politis, S. Tervo, V. Pulkki: Compass: Coding and multidirectional parameterization of ambisonic sound scenes, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 6802–6806. [Google Scholar]
- L. McCormack, A. Politis, R. Gonzalez, T. Lokki, V. Pulkki: Parametric ambisonic encoding of arbitrary microphone arrays. IEEE/ACM Transactions on Audio, Speech, and Language Processing 30 (2022) 2062–2075. [CrossRef] [Google Scholar]
- J. Fernandez, L. McCormack, P. Hyvärinen, A. Politis, V. Pulkki: Enhancing binaural rendering of head-worn microphone arrays through the use of adaptive spatial covariance matching. The Journal of the Acoustical Society of America 151, 4 (2022) 2624–2635. [CrossRef] [PubMed] [Google Scholar]
- L. McCormack, A. Politis, V. Pulkki: Rendering of source spread for arbitrary playback setups based on spatial covariance matching, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 2021. [Google Scholar]
- J. Daniel, S. Kitić: Echo-enabled direction-of-arrival and range estimation of a mobile source in Ambisonic domain, 2022. arXiv preprint arXiv:2203.05265 [Google Scholar]
- S. Kitić, J. Daniel: Generalized time domain velocity vector, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022, pp. 936–940. [Google Scholar]
- T. Shlomo, B. Rafaely: Blind amplitude estimation of early room reflections using alternating least squares, in ICASSP 2021 – 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021, pp. 476–480. [Google Scholar]
- T. Shlomo, B. Rafaely: Blind localization of early room reflections using phase aligned spatial correlation. IEEE Transactions on Signal Processing 69 (2021) 1213–1225. [CrossRef] [Google Scholar]
- IEEE AASP challenge on detection and classification of acoustic scenes and events (DCASE). Accessed on December 6, 2021. http://dcase.community/challenge2021/ [Google Scholar]
- A. Mesaros, T. Heittola, T. Virtanen: A multi-device dataset for urban acoustic scene classification, in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), Surrey, UK, 2018, pp. 9–13. [Google Scholar]
- A. Politis, S. Adavanne, T. Virtanen: A dataset of reverberant spatial sound scenes with moving sources for sound event localization and detection, in Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE2020), 2020. [Google Scholar]
- P.-A. Grumiaux: Deep learning for speaker counting and localization with Ambisonics signals. PhD thesis, Université Grenoble Alpes (UGA), 2021. [Google Scholar]
- J. Eaton, N.D. Gaubitch, A.H. Moore, P.A. Naylor: Estimation of room acoustic parameters: the ACE challenge. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 10 (2016) 1681–1693. [CrossRef] [Google Scholar]
- H. Gamper, I.J. Tashev: Blind reverberation time estimation using a convolutional neural network, in 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), IEEE, 2018, pp. 136–140. [Google Scholar]
- P. Götz, C. Tuna, A. Walther, E.A.P. Habets: Blind reverberation time estimation in dynamic acoustic conditions, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022. [Google Scholar]
- S. Deng, W. Mack, E.A.P. Habets: Online blind reverberation time estimation using CRNNs, in INTERSPEECH, Incheon, Korea, 2020, pp. 5061–5065. [Google Scholar]
- S. Duangpummet, J. Karnjana, W. Kongprawechnon, M. Unoki: Blind estimation of room acoustic parameters and speech transmission index using MTF-based CNNs, in The European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 2021, pp. 181–185, abs/2103.07904 [Google Scholar]
- D. Looney, N.D. Gaubitch: Joint estimation of acoustic parameters from single-microphone speech observations, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 431–435. [Google Scholar]
- P. Morgado, N. Vasconcelos, T. Langlois, O. Wang: Self-supervised generation of spatial audio for 360 video, 2018. arXiv preprint arXiv:1809.02587 [Google Scholar]
- A. Richard, D. Markovic, I.D. Gebru, S. Krenn, G.A. Butler, F. Torre, Y. Sheikh: Neural synthesis of binaural speech from mono audio, in International Conference on Learning Representations, 2021. [Google Scholar]
- M. Cobos, J. Ahrens, K. Kowalczyk, A. Politis: An overview of machine learning and other data-based methods for spatial audio capture, processing, and reproduction. EURASIP Journal on Audio, Speech, and Music Processing 2022, 1 (2022) 1–21. [CrossRef] [Google Scholar]
- HEAR360: 8Ball microphone. Accessed on December 6, 2021. https://8ballmicrophones.com [Google Scholar]
- 3DOI: Omni binaural microphone. Accessed on December 6, 2021. https://3diosound.com/products/omni-binaural-microphone [Google Scholar]
- M. Noisternig, A. Sontacchi, T. Musil, R. Holdrich: A 3D ambisonic based binaural sound reproduction system, in Audio Engineering Society Conference: 24th International Conference: Multichannel Audio, The New Reality, 2003. [Google Scholar]
- L.S. Davis, R. Duraiswami, E. Grassi, N.A. Gumerov, Z. Li, D.N. Zotkin: High order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues, in Audio Engineering Society Convention 119, Audio Engineering Society, 2005. [Google Scholar]
- C.H. Choi, J. Ivanic, M.S. Gordon, K. Ruedenberg: Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. The Journal of Chemical Physics 111, 19 (1999) 8825–8831. [CrossRef] [Google Scholar]
- N.A. Gumerov, R. Duraiswami: Fast multipole methods for the helmholtz equation in three dimensions. Elsevier, 2005. [Google Scholar]
- P.J. Kostelec, D.N. Rockmore: FFTs on the rotation group. Journal of Fourier Analysis and Applications 14, 2 (2008) 145–179. [CrossRef] [Google Scholar]
- D. Pinchon, P.E. Hoggan: Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes. Journal of Physics A: Mathematical and Theoretical 40, 7 (2007) 1597. [CrossRef] [Google Scholar]
- B. Rafaely, M. Kleider: Spherical microphone array beam steering using Wigner-D weighting. IEEE Signal Processing Letters 15 (2008) 417–420. [CrossRef] [Google Scholar]
- F. Zotter: Analysis and synthesis of sound-radiation with spherical arrays. PhD thesis, University of Music and Performing Arts, Vienna, Austria, 2009. [Google Scholar]
- J. Ahrens, H. Helmholz, D.L. Alon, S.V.A. Garí: A head-mounted microphone array for binaural rendering, in 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), IEEE, 2021, pp. 1–7. [Google Scholar]
- J. Ahrens, H. Helmholz, D.L. Alon, S.V.A. Garí: Spherical harmonic decomposition of a sound field based on microphones around the circumference of a human head, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2021, pp. 231–235. [Google Scholar]
- L. Madmoni, J. Donley, V. Tourbabin, B. Rafaely: Binaural reproduction from microphone array signals incorporating head-tracking, in 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), IEEE, 2021, pp. 1–5. [Google Scholar]
- D. Rivas Méndez, C. Armstrong, J. Stubbs, M. Stiles, G. Kearney: Practical recording techniques for music production with six-degrees of freedom virtual reality, in Audio Engineering Society Convention 145, Audio Engineering Society, 2018. [Google Scholar]
- J. Daniel: Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format, in Audio Engineering Society Conference: 23rd International Conference: Signal Processing in Audio Recording and Reproduction, Copenhagen, Denmark, 2003. [Google Scholar]
- E. Stein, M.M. Goodwin: Ambisonics depth extensions for six degrees of freedom, in Audio Engineering Society Conference: International Conference on Headphone Technology, San Francisco, CA, USA, 2019. [Google Scholar]
- F. Zotter, M. Frank, C. Schörkhuber, R. Höldrich: Signal-independent approach to variable-perspective (6DoF) audio rendering from simultaneous surround recordings taken at multiple perspectives, in Fortschritte der Akustik (DAGA), Hannover, Germany, 2020. [Google Scholar]
- E. Bates, H. O’Dwyer, K.-P. Flachsbarth, F.M. Boland: A recording technique for 6 degrees of freedom VR, in Audio Engineering Society Convention 144, Audio Engineering Society, 2018. [Google Scholar]
- E. Fernandez-Grande: Sound field reconstruction using a spherical microphone array. The Journal of the Acoustical Society of America 139, 3 (2016) 1168–1178. [CrossRef] [PubMed] [Google Scholar]
- T. Pihlajamaki, V. Pulkki: Synthesis of complex sound scenes with transformation of recorded spatial sound in virtual reality. Journal of the Audio Engineering Society 63, 7/8 (2015) 542–551. [CrossRef] [Google Scholar]
- A. Plinge, S.J. Schlecht, O. Thiergart, T. Robotham, O. Rummukainen, E.A.P. Habets: Six-degrees-of-freedom binaural audio reproduction of first-order Ambisonics with distance information, in Audio Engineering Society Conference: International Conference on Audio for Virtual and Augmented Reality, 2018. [Google Scholar]
- K. Wakayama, J. Trevino, H. Takada, S. Sakamoto, Y. Suzuki: Extended sound field recording using position information of directional sound sources, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2017, pp. 185–189. [Google Scholar]
- A. Allen, B. Kleijn: Ambisonics soundfield navigation using directional decomposition and path distance estimation, in International Conference on Spatial Audio, Graz, Austria, 2017. [Google Scholar]
- M. Kentgens, A. Behler, P. Jax, Translation of a higher order Ambisonics sound scene based on parametric decomposition, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 151–155. [Google Scholar]
- F. Schultz, S. Spors: Data-based binaural synthesis including rotational and translatory head-movements, in Audio Engineering Society Conference: 52nd International Conference: Sound Field Control-Engineering and Perception, Guildford, UK, 2013. [Google Scholar]
- Y. Wang, K. Chen: Translations of spherical harmonics expansion coefficients for a sound field using plane wave expansions. The Journal of the Acoustical Society of America 143, 6 (2018) 3474–3478. [CrossRef] [PubMed] [Google Scholar]
- L. Birnie, T. Abhayapala, V. Tourbabin, P. Samarasinghe: Mixed source sound field translation for virtual binaural application with perceptual validation. IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021) 1188–1203. [CrossRef] [Google Scholar]
- J.G. Tylka, E. Choueiri: Comparison of techniques for binaural navigation of higher-order ambisonic soundfields, in Audio Engineering Society Convention 139, Audio Engineering Society, 2015. [Google Scholar]
- J.G. Tylka, E.Y. Choueiri: Performance of linear extrapolation methods for virtual sound field navigation. Journal of the Audio Engineering Society 68, 3 (2020) 138–156. [CrossRef] [Google Scholar]
- M. Kentgens, P. Jax: Ambient-aware sound field translation using optimal spatial filtering, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2021, pp. 236–240. [Google Scholar]
- M. Kentgens, S. Al Hares, P. Jax: On the upscaling of higher-order Ambisonics signals for sound field translation, in 2021 29th European Signal Processing Conference (EUSIPCO), IEEE, 2021, pp. 81–85. [Google Scholar]
- A. Brutti, M. Omologo, P. Svaizer: Localization of multiple speakers based on a two step acoustic map analysis, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, USA, 2008, pp. 4349–4352. [Google Scholar]
- A. Brutti, M. Omologo, P. Svaizer: Multiple source localization based on acoustic map de-emphasis. EURASIP Journal on Audio, Speech, and Music Processing 2010 (2010) 1–17. [CrossRef] [Google Scholar]
- G. Del Galdo, O. Thiergart, T. Weller, E.A.P. Habets: Generating virtual microphone signals using geometrical information gathered by distributed arrays, in 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, IEEE, 2011, pp. 185–190. [Google Scholar]
- O. Thiergart, G. Del Galdo, M. Taseska, E.A.P. Habets: Geometry-based spatial sound acquisition using distributed microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing 21, 12 (2013) 2583–2594. [Google Scholar]
- X. Zheng: Soundfield navigation: separation, compression and transmission. PhD thesis, University of Wollongong, Wollongong, Australia, 2013. [Google Scholar]
- J.G. Tylka, E. Choueiri: Soundfield navigation using an array of higher-order Ambisonics microphones, in Audio Engineering Society Conference: International Conference on Audio for Virtual and Augmented Reality, Los Angeles, CA, USA, 2016. [Google Scholar]
- J.G. Tylka, E.Y. Choueiri: Domains of practical applicability for parametric interpolation methods for virtual sound field navigation. Journal of the Audio Engineering Society 67, 11 (2019) 882–893. [Google Scholar]
- J.G. Tylka: Virtual navigation of Ambisonics-encoded sound fields containing near-field sources. PhD thesis, Princeton University, Princeton, USA, 2019. [Google Scholar]
- M.F. Fallon, S.J. Godsill: Acoustic source localization and tracking of a time-varying number of speakers. IEEE Transactions on Audio, Speech, and Language Processing 20, 4 (2011) 1409–1415. [Google Scholar]
- S. Kitić, A. Guérin: Tramp: tracking by a real-time ambisonic-based particle filter, in Proceedings of LOCATA Challenge Workshop – a satellite event of IWAENC 2018, Tokyo, Japan, 2018. [Google Scholar]
- J.-M. Valin, F. Michaud, J. Rouat: Robust 3D localization and tracking of sound sources using beamforming and particle filtering, in IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), vol. 4, Toulouse, France, 2006, IV–841–IV–844. [Google Scholar]
- J.-M. Valin, F. Michaud, J. Rouat: Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering. Robotics and Autonomous Systems 55, 3 (2007) 216–228. [CrossRef] [Google Scholar]
- D.B. Ward, E.A. Lehmann, R.C. Williamson: Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Transactions on Speech and Audio Processing 11, 6 (2003) 826–836. [CrossRef] [Google Scholar]
- N. Mariette, B.F.G. Katz, K. Boussetta, O. Guillerminet: Sounddelta: a study of audio augmented reality using wifi-distributed ambisonic cell rendering, in Audio Engineering Society Convention 128, Audio Engineering Society, 2010. [Google Scholar]
- E. Patricio, A. Ruminski, A. Kuklasinski, L. Januszkiewicz, T. Zernicki: Toward six degrees of freedom audio recording and playback using multiple Ambisonics sound fields, in Audio Engineering Society Convention 146, Audio Engineering Society, 2019. [Google Scholar]
- C. Schörkhuber, R. Höldrich, F. Zotter: Triplet-based variable-perspective (6DoF) audio rendering from simultaneous surround recordings taken at multiple perspectives, in Fortschritte der Akustik (DAGA), vol. 4, Hannover, Germany, 2020. [Google Scholar]
- P. Grosche, F. Zotter, C. Schörkhuber, M. Frank, R. Höldrich: Method and apparatus for acoustic scene playback, 2020. US Patent 10,785,588. [Google Scholar]
- M. Blochberger, F. Zotter: Particle-filter tracking of sounds for frequency-independent 3D audio rendering from distributed B-format recordings. Acta Acustica 5 (2021) 20. [CrossRef] [EDP Sciences] [Google Scholar]
- L. McCormack, A. Politis, T. McKenzie, C. Hold, V. Pulkki: Object-based six-degrees-of-freedom rendering of sound scenes captured with multiple Ambisonic receivers. Journal of the Audio Engineering Society 70, 5 (2022) 355–372. [CrossRef] [Google Scholar]
- E. Erdem, O. Olgun, H. Hacihabiboğlu: Internal time delay calibration of rigid spherical microphone arrays for multi-perspective 6DoF audio recordings, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2021, pp. 241–245. [Google Scholar]
- O. Olgun, E. Erdem, H. Hachabiboğlu: Rotation calibration of rigid spherical microphone arrays for multi-perspective 6DoF audio recordings, in 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), IEEE, 2021, pp. 1–7. [Google Scholar]
- A.H. Moore, L. Lightburn, W. Xue, P.A. Naylor, M. Brookes: Binaural mask-informed speech enhancement for hearing aids with head tracking, in 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), Tokyo, Japan, 2018, pp. 461–465. [Google Scholar]
- N.R. Shabtai, B. Rafaely: Generalized spherical array beamforming for binaural speech reproduction. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22, 1 (2013) 238–247. [Google Scholar]
- C. Borrelli, A. Canclini, F. Antonacci, A. Sarti, S. Tubaro: A denoising methodology for higher order Ambisonics recordings, in 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), IEEE, 2018, pp. 451–455. [Google Scholar]
- M. Lugasi, B. Rafaely: Speech enhancement using masking for binaural reproduction of Ambisonics signals. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020) 1767–1777. [CrossRef] [Google Scholar]
- A. Herzog, E.A.P. Habets: Direction and reverberation preserving noise reduction of ambisonics signals. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020) 2461–2475. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.