Acta Acust.
Volume 6, 2022
Topical Issue - Aeroacoustics: state of art and future trends
Article Number 36
Number of page(s) 11
Published online 26 August 2022
  1. C.P. Lubert, K.L. Gee, S. Tsutsumi: Supersonic jet noise from launch vehicles: 50 years since nasa sp-8072. Journal of the Acoustical Society of America 151, 2 (2022) 752–791. [CrossRef] [PubMed] [Google Scholar]
  2. A. Powell: On edge tones and associated phenomena. Acta Acustica United with Acustica 3, 4 (1953) 233–243. [Google Scholar]
  3. G. Neuwerth: Acoustic feedback of a subsonic and supersonic free jet which impinges on an obstacle. NASA Technical Translation No. F-15719, 1974. [Google Scholar]
  4. J.S. Preisser: Fluctuating surface pressure and acoustic radiation for subsonic normal jet impingement. NASA Technical Paper 1361, 1979. [Google Scholar]
  5. C.-M. Ho, N.S. Nosseir: Dynamics of an impinging jet. Part 1. The feedback phenomenon. Journal of Fluid Mechanics 105 (1981) 119–142. [CrossRef] [Google Scholar]
  6. N.S. Nosseir, C.-M. Ho: Dynamics of an impinging jet. Part 2. The noise generation, Journal of Fluid Mechanics 116 (1982) 379–391. [CrossRef] [Google Scholar]
  7. V. Jaunet, M. Mancinelli, P. Jordan, A. Towne, D.M. Edgington-Mitchell, G. Lehnasch, S. Girard: Dynamics of round jet impingement. AIAA Paper 2019–2769, 2019. [Google Scholar]
  8. M. Varé, C. Bogey: Generation of acoustic tones in round jets at a Mach number of 0.9 impinging on a plate with and without a hole. Journal of Fluid Mechanics 936 (2022) A16. [CrossRef] [Google Scholar]
  9. T.D. Norum: Supersonic rectangular jet impingement noise experiments. AIAA Journal 29, 7 (1991) 1051–1057. [CrossRef] [Google Scholar]
  10. A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco: Flow field and noise characteristics of a supersonic impinging jet. Journal of Fluid Mechanics 392 (1999) 155–181. [CrossRef] [Google Scholar]
  11. B. Henderson, J. Bridges, M. Wernet: An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. Journal of Fluid Mechanics 542 (2005) 115–137. [CrossRef] [Google Scholar]
  12. A. Risborg, J. Soria: High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate, in: 28th International Congress on High-Speed Imaging and Photonics, Vol. 7126, International Society for Optics and Photonics, 2009, p. 71261F. [Google Scholar]
  13. N.A. Buchmann, D.M. Mitchell, K.M. Ingvorsen, D.R. Honnery, J. Soria: High spatial resolution imaging of a supersonic underexpanded jet impinging on a flat plate, in: 6th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, 2011. [Google Scholar]
  14. D.M. Mitchell, D.R. Honnery, J. Soria: The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. Journal of Visualization 15, 4 (2012) 333–341. [CrossRef] [Google Scholar]
  15. A. Dauptain, L.Y. Gicquel, S. Moreau: Large-eddy simulation of supersonic impinging jets. AIAA Journal 50, 7 (2012) 1560–1574. [CrossRef] [Google Scholar]
  16. R. Gojon, C. Bogey, O. Marsden: Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. Journal of Fluid Mechanics 808 (2016) 90–115. [CrossRef] [Google Scholar]
  17. C. Bogey, R. Gojon: Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. Journal of Fluid Mechanics 823 (2017) 562–591. [CrossRef] [Google Scholar]
  18. R. Gojon, C. Bogey: Flow structure oscillations and tone production in underexpanded impinging round jets. AIAA Journal 55, 6 (2017) 1792–1805. [CrossRef] [Google Scholar]
  19. A. Towne, A.V.G. Cavalieri, P. Jordan, T. Colonius, O. Schmidt, V. Jaunet, G.A. Brès: Acoustic resonance in the potential core of subsonic jets. Journal of Fluid Mechanics 825 (2017) 1113–1152. [CrossRef] [Google Scholar]
  20. O.T. Schmidt, A. Towne, T. Colonius, A.V.G. Cavalieri, P. Jordan, G.A. Brès: Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. Journal of Fluid Mechanics 825 (2017) 1153–1181. [CrossRef] [Google Scholar]
  21. C. Bogey: Acoustic tones in the near-nozzle region of jets: characteristics and variations between Mach numbers 0.5 and 2. Journal of Fluid Mechanics 921 (2021) A3. [CrossRef] [Google Scholar]
  22. S. Kawai, S. Tsutsumi, R. Takaki, K. Fujii: Computational aeroacoustic analysis of overexpanded supersonic jet impingement on a flat plate with/without hole, in: ASME/JSME 2007 5th Joint Fluids Engineering Conference, American Society of Mechanical Engineers, 2007, pp. 1163–1167. [Google Scholar]
  23. S. Tsutsumi, R. Takaki, H. Ikaida, K. Terashima: Numerical aeroacoustics analysis of a scaled solid jet impinging on flat plate with exhaust hole, in: 30th International Symposium on Space Technology and Science, 2015. [Google Scholar]
  24. J. Troyes, F. Vuillot, A. Langenais, H. Lambaré: Coupled CFD-CAA simulation of the noise generated by a hot supersonic jet impinging on a flat plate with exhaust hole. AIAA Paper 2019–2752, 2019. [Google Scholar]
  25. M. Varé, C. Bogey: Flow and acoustic fields of rocket jets impinging on a perforated plate, AIAA Journal 60 (2022) 1–14. [Google Scholar]
  26. C. Bogey, O. Marsden, C. Bailly: Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers. Physics of Fluids 23, 3 (2011) 035104. [CrossRef] [Google Scholar]
  27. C. Bogey, C. Bailly: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. Journal of Computational Physics 194, 1 (2004) 194–214. [CrossRef] [Google Scholar]
  28. C. Bogey, N. De Cacqueray, C. Bailly: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. Journal of Computational Physics 228, 5 (2009) 1447–1465. [CrossRef] [Google Scholar]
  29. D. Fauconnier, C. Bogey, E. Dick: On the performance of relaxation filtering for large-eddy simulation. Journal of Turbulence 14, 1 (2013) 22–49. [CrossRef] [Google Scholar]
  30. C.K.W. Tam, Z. Dong: Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a non uniform mean flow. Journal of Computational Acoustics 4, 02 (1996) 175–201. [CrossRef] [Google Scholar]
  31. K. Mohseni, T. Colonius: Numerical treatment of polar coordinate singularities. Journal of Computational Physics 157, 2 (2000) 787–795. [CrossRef] [Google Scholar]
  32. S. Viazzo, A. Dejoan, R. Schiestel: Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturbations using les. International Journal of Heat and Fluid Flow 22, 1 (2001) 39–52. [CrossRef] [Google Scholar]
  33. P. Schlatter, Q. Li, G. Brethouwer, A.V. Johansson, D.S. Henningson: Simulations of spatially evolving turbulent boundary layers up to Reθ=4300. International Journal of Heat and Fluid Flow 31, 3 (2010) 251–261. [CrossRef] [Google Scholar]
  34. X. Gloerfelt, J. Berland: Turbulent boundary-layer noise: direct radiation at Mach number 0.5. Journal of Fluid Mechanics 723 (2013) 318–351. [CrossRef] [Google Scholar]
  35. F. Kremer, C. Bogey: Large-eddy simulation of turbulent channel flow using relaxation filtering: Resolution requirement and Reynolds number effects. Computers & Fluids 116 (2015) 17–28. [CrossRef] [Google Scholar]
  36. N. De Cacqueray, C. Bogey, C. Bailly: Investigation of a high-Mach-number overexpanded jet using large-eddy simulation. AIAA Journal 49, 10 (2011) 2171–2182. [CrossRef] [Google Scholar]
  37. A. Langenais, F. Vuillot, J. Troyes, C. Bailly: Accurate simulation of the noise generated by a hot supersonic jet including turbulence tripping and nonlinear acoustic propagation. Physics of Fluids 31, 1 (2019) 016105. [CrossRef] [Google Scholar]
  38. T. Nonomura, K. Fujii: Overexpansion effects on characteristics of Mach waves from a supersonic cold jet. AIAA Journal 49, 10 (2011) 2282–2294. [CrossRef] [Google Scholar]
  39. P. Pineau, C. Bogey: Steepened Mach waves near supersonic jets: study of azimuthal structure and generation process using conditional averages. Journal of Fluid Mechanics 880 (2019) 594–619. [CrossRef] [Google Scholar]
  40. C.K.W. Tam, K.K. Ahuja: Theoretical model of discrete tone generation by impinging jets. Journal of Fluid Mechanics 214 (1990) 67–87. [CrossRef] [Google Scholar]
  41. B. Henderson: The connection between sound production and jet structure of the supersonic impinging jet. Journal of the Acoustical Society of America 111, 2 (2002) 735–747. [CrossRef] [PubMed] [Google Scholar]
  42. G. Sinibaldi, L. Marino, G.P. Romano: Sound source mechanisms in under-expanded impinging jets. Experiments in Fluids 56, 5 (2015) 105. [CrossRef] [Google Scholar]
  43. T. Nonomura, H. Honda, Y. Nagata, M. Yamamoto, S. Morizawa, S. Obayashi, K. Fujii: Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA Journal 54, 3 (2016) 816–827. [CrossRef] [Google Scholar]
  44. C. Brehm, J.A. Housman, C.C. Kiris: Noise generation mechanisms for a supersonic jet impinging on an inclined plate. Journal of Fluid Mechanics 797 (2016) 802–850. [CrossRef] [Google Scholar]
  45. T. Suzuki, S.K. Lele: Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. Journal of Fluid Mechanics 490 (2003) 139–167. [CrossRef] [Google Scholar]
  46. J. Berland, C. Bogey, C. Bailly: Numerical study of screech generation in a planar supersonic jet. Physics of Fluids 19, 7 (2007) 075105. [CrossRef] [Google Scholar]
  47. D. Edgington-Mitchell, J. Weightman, S. Lock, R. Kirby, V. Nair, J. Soria, D. Honnery: The generation of screech tones by shock leakage. Journal of Fluid Mechanics 908 (2021) A46. [CrossRef] [Google Scholar]
  48. A. Michalke: Survey on jet instability theory. Progress in Aerospace Sciences 21 (1984) 159–199. [CrossRef] [Google Scholar]
  49. P.J. Morris: The instability of high speed jets. International Journal of Aeroacoustics 9, 1–2 (2010) 1–50. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.