Acta Acust.
Volume 6, 2022
Topical Issue - Aeroacoustics: state of art and future trends
Article Number 37
Number of page(s) 13
Published online 15 September 2022
  1. A. Gupta, A. Gupta, K. Jain, S. Gupta: Noise pollution and impact on children health. The Indian Journal of Pediatrics 85, 4 (2018) 300–306. [CrossRef] [PubMed] [Google Scholar]
  2. D. Jhanwar: Noise pollution: a review. Journal of Environment Pollution and Human Health 4, 3 (2016) 72–77. [Google Scholar]
  3. E. Commission: Amending Directive 2007/46/ec and Repealing Directive 70/157/eec. [Google Scholar]
  4. United Nations: Sustainable development goals. [Google Scholar]
  5. A. Mathur, H. Uitslag-Doolaard, F. Roelofs: Reduced-resolution RANS approach to grid spacer fuel assemblies. Nuclear Engineering and Design 356 (2020) 110374. [CrossRef] [Google Scholar]
  6. E.S. Oran, J.P. Boris: Computing turbulent shear flows – a convenient conspiracy. Computers in Physics 7, 5 (1993) 523–533. [CrossRef] [Google Scholar]
  7. F. Mendonca, O. Baris, G. Capon: Simulation of Radial Compressor Aeroacoustics Using CFD, in Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 8: Turbomachinery, Parts A, B, and C, June 11–15, 2012, Copenhagen, Denmark, 2012, 1823–1832. [Google Scholar]
  8. J. Galindo, A. Tiseira, R. Navarro, M. López: Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow 52 (2015) 129–139. [CrossRef] [Google Scholar]
  9. A. Broatch, J. Galindo, J. Navarro, J. García-Tíscar: Methodology for experimental validation of a cfd model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow 50 (2014) 134–144. [CrossRef] [Google Scholar]
  10. A. Broatch, J. Galindo, R. Navarro, J. García-Tíscar: Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics 9, 1 (2015) 12–20. [CrossRef] [Google Scholar]
  11. A. Broatch, J. Galindo, R. Navarro, J. García-Tíscar: Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow 61 (2016) 245–255. [CrossRef] [Google Scholar]
  12. A. Broatch, J. García-Tíscar, F. Roig, S. Sharma: Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology 90 (2019) 388–400. [CrossRef] [Google Scholar]
  13. S. Fontanesi, S. Paltrinieri, G. Cantore: CFD analysis of the acoustic behavior of a centrifugal compressor for high performance engine application. Energy Procedia 45 (2014) 759–768. [CrossRef] [Google Scholar]
  14. R. Dehner, A. Selamet: Prediction of broadband noise in an automotive centrifugal compressor with three-dimensional computational fluid dynamics detached eddy simulations. SAE International Journal of Advances and Current Practices in Mobility 1 (2019) 1714–1720. [Google Scholar]
  15. V. Jyothishkumar, M. Mihaescu, B. Semlitsch, L. Fuchs: Numerical flow analysis in centrifugal compressor near surge condition, in: 43rd AIAA Fluid Dynamics Conference, 2013, p. 2730. [Google Scholar]
  16. E. Sundström, Flow instabilities in centrifugal compressors at low mass flow rate, Doctoral Thesis in Engineering Mechanics, KTH Stockholm, 2017. [Google Scholar]
  17. E. Sundström, B. Semlitsch, M. Mihăescu: Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration 434 (2018) 221–236. [CrossRef] [Google Scholar]
  18. E. Sundström, M. Mihaescu: Centrifugal compressor: The sound of surge, in 21st AIAA/CEAS Aeroacoustics Conference, 22–26 June, 2015, Dallas, Texas, USA, 2674. [Google Scholar]
  19. B. Semlitsch, V. Jyothiskumar, M. Mihaescu, L. Fuchs: Investigation of the surge phenomena in a centrifugal compressor using large eddy simulation, in Proceedings ASME, 15–21 November, 2013, San Diego, California, USA. [Google Scholar]
  20. A. Hauser: Numerical and experimental investigations on resonators in automotive air ducts, Master’s Thesis, Technical University of Vienna, 2021. [Google Scholar]
  21. J.E. Ffowcs Williams, D.L. Hawkings: Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London: Series A, Mathematical and Physical Sciences 264, 1151, 1969, 321–342. [Google Scholar]
  22. M. Kaltenbacher: Numerical simulation of mechatronik sensors and actuators: finite elements for computational multiphysics. 3rd ed., Springer, 2015. [Google Scholar]
  23. M. Kaltenbacher, M. Escobar, S. Becker, I. Ali: Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustic analogy. International Journal for Numerical Methods in Fluids 63 (2010) 1103–1122. [Google Scholar]
  24. M. Tautz, K. Besserer, S. Becker, M. Kaltenbacher: Source formulations and boundary treatments for Lighthill’s analogy applied to incompressible flows, AIAA Journal 56, 7 (2018) 2769–2781. [CrossRef] [Google Scholar]
  25. M. Escobar: Finite element simulation of flow-induced noise using Lighthill’s acoustic analogy, Ph.D. Thesis, FAU Erlangen, 2007. [Google Scholar]
  26. S. Caro, P. Ploumhans, X. Gallez, R. Sandboge, F. Sahkib, M. Matthes: A NEW CAA formulation based on Lighthill’s analogy applied to an idealized automotive HVAC blower using AcuSolve and Actran/LA, in 11th AIAA/CEAS Aeroacoustics Conference, 23–25 May, 2005, Monterey, California, USA. [Google Scholar]
  27. M.J. Lighthill: On sound generated aerodynamically. I. General theory. Proceedings of the Royal Society 211 (1952) 564–587. [Google Scholar]
  28. M.J. Lighthill: On sound generated aerodynamically. Ii. Turbulence as a source of sound. Proceedings of the Royal Society 222 (1954) 1–32. [Google Scholar]
  29. J.R. Ristorcelli: A closure for the compressibility of the source terms in Lighthill’s acoustic analogy. ICASE Report. [Google Scholar]
  30. R. Ewert: A hybrid computational aeroacoustic method to simulate airframe noise, Ph.D. thesis, Technische Hochschule Aachen, 2002. [Google Scholar]
  31. M. Cabana, V. Fortuné, P. Jordan: Identifying the radiating core of Lighthill’s source term. Theoretical and Computational Fluid Dynamics 22 (2008) 87–106. [CrossRef] [Google Scholar]
  32. T. Colonius, J. Freund: Application of Lighthill’s equation to a mach 1.92 turbulent jet. AIAA Journal 38, 2 (2000) 368–370. [CrossRef] [Google Scholar]
  33. C. Junger: Computational aeroacoustics for the characterization of noise sources in Rotatin systems, Ph.D. Thesis, TU Wien, 2019. [Google Scholar]
  34. F. Farassat: Linear acoustic formulas for calculation of rotating blade noise. AIAA Journal 19, 9 (1981) 1122–1130. [CrossRef] [Google Scholar]
  35. F. Farassat, S. Padula, M. Dunn: Advanced turboprop noise prediction based on recent theoretical results. Journal of Sound and Vibration 119, 1 (1987) 53–79. [CrossRef] [Google Scholar]
  36. STAR-CCM+ documentation – Steve Portal,, accessed: 2019–05. [Google Scholar]
  37. B. Kaltenbacher, M. Kaltenbacher, I. Sim: A modified and stable version of a perfectly matched layer technique for the 3-D second order wave equation in time domain with an application to aeroacoustics, Journal of Computational Physics 235 (2013) 407–422. [CrossRef] [PubMed] [Google Scholar]
  38. C. Freidhager: Aeroacoustics of automotive turbochargers, Ph.D. Thesis, TU Graz, 2022. [Google Scholar]
  39. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: State of art and new achievements. Journal of Theoretical and Computational Acoustics 27, 4 (2019) 1950020. [Google Scholar]
  40. S. Schoder, M. Weitz, P. Maurerlehner, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, M. Kaltenbacher: Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation. The Journal of the Acoustical Society of America 147, 2 (2020) 1179–1194. [CrossRef] [PubMed] [Google Scholar]
  41. S. Schoder, A. Wurzinger, C. Junger, M. Weitz, C. Freidhager, K. Roppert, M. Kaltenbacher: Application limits of conservative source interpolation methods using a low mach number hybrid aeroacoustic workflow. Journal of Theoretical and Computational Acoustics 29, 1 (2021) 2050032. [CrossRef] [Google Scholar]
  42. S. Schoder, K. Roppert, M. Weitz, C. Junger, M. Kaltenbacher: Aeroacoustic source term computation based on radial basis functions. International Journal for Numerical Methods in Engineering 121, 9 (2020) 2051–2067. [CrossRef] [PubMed] [Google Scholar]
  43. S. Schoder, C. Junger, M. Kaltenbacher: Computational aeroacoustics of the eaa benchmark case of an axial fan. Acta Acustica 4, 5 (2020) 22. [EDP Sciences] [Google Scholar]
  44. C. Bogey, C. Bailly, D. Juvé: Computation of flow noise using source terms in linearized euler’s equations. AIAA Journal 40, 2 (2002) 235–243. [CrossRef] [Google Scholar]
  45. openCFS: Finite elements for computational multiphysics. [Google Scholar]
  46. J.K. Müller: Zur Schallabstrahlung des Abgasturboladers in Abhängigkeit der Verdichter- und Turbinenanströmung, Ph.D. thesis, FAU Erlangen, 2020. [Google Scholar]
  47. C. Freidhager, P. Maurerlehner, K. Roppert, M. Heinisch, A. Renz, S. Schoder, M. Kaltenbacher: Predicting spatial distributions of Lighthill’s aeroacoustic source terms using steady-state RANS simulations in Turbocharger compressors. Journal of Aerospace Engineering 35, 1 (2022) 04021101. [CrossRef] [Google Scholar]
  48. A. Hüppe: Spectral finite elements for acoustic field computation. Ph.D. Thesis. Alpen-Adria-Universitat Klagenfurt, 2012. [Google Scholar]
  49. Siemens Product Lifecycle Management Software Inc., STAR-CCM+. [Google Scholar]
  50. S. Schoder, P. Maurerlehner, A. Wurzinger, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, M. Kaltenbacher: Aeroacoustic sound source characterization of the human voice production-perturbed convective wave equation. Applied Sciences 11, 6 (2021) 2614. [CrossRef] [Google Scholar]
  51. Vienna scientific cluster 3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.