Open Access
Issue |
Acta Acust.
Volume 6, 2022
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 14 | |
Section | Musical Acoustics | |
DOI | https://doi.org/10.1051/aacus/2022026 | |
Published online | 01 August 2022 |
- M. Campbell, J. Gilbert, A. Myers: The science of brass instruments. Springer-Verlag, 2021. [CrossRef] [Google Scholar]
- R. Mattéoli, J. Gilbert, C. Vergez, J.-P. Dalmont, S. Maugeais, S. Terrien, F. Ablitzer: Minimal blowing pressure allowing periodic oscillations in a model of bass brass instruments. Acta Acustica 5 (2021) 57. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Velut, C. Vergez, J. Gilbert, M. Djahanbani: How well can linear stability analysis predict the behavior of an outward valve brass instrument model? Acta Acustica United with Acustica 103, 1 (2017) 132–148. [CrossRef] [Google Scholar]
- A. Hirschberg (Editor), Mechanics of musical instruments. Number 355 in Courses and Lectures/International Centre for Mechanical Sciences. Springer, 1995. [Google Scholar]
- M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillations of musical instruments. The Journal of the Acoustical Society of America 74, 5 (1983) 1325–1345. [CrossRef] [Google Scholar]
- N.H. Fletcher, T.D. Rossing: The physics of musical instruments, 2nd edn. Springer, 1998. [Google Scholar]
- A. Chaigne, J. Kergomard: Acoustics of musical instruments. Modern acoustics and signal processing. ASA Press, Springer, 2016. Originally published in France as: Acoustique des instruments de musique. Second edition. Paris: Éditions Belin, 2013. [CrossRef] [Google Scholar]
- S.J. Elliott, J.M. Bowsher: Regeneration in brass wind instruments. Journal of Sound and Vibration 83, 2 (1982) 181–217. [CrossRef] [Google Scholar]
- N.H. Fletcher: Autonomous vibration of simple pressure-controlled valves in gas flows. The Journal of the Acoustical Society of America 93, 4 (1993) 2172–2180. [CrossRef] [Google Scholar]
- V. Pagneux, N. Amir, J. Kergomard: A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation. The Journal of the Acoustical Society of America 100, 4 (1996) 2034–2048. [CrossRef] [Google Scholar]
- R. Seydel, Practical bifurcation and stability analysis. Number 5 in interdisciplinary applied mathematics. Springer Science + Business Media, LLC Springer e-books, 2010. [CrossRef] [Google Scholar]
- Y.A. Kuznetsov: Elements of applied bifurcation theory. Springer-Verlag, 2004. [CrossRef] [Google Scholar]
- Y.M. Chang: Reed stability. Journal of Fluids and Structures 8, 7 (1994) 771–783. [CrossRef] [Google Scholar]
- S. Karkar, C. Vergez, B. Cochelin: Oscillation threshold of a clarinet model: A numerical continuation approach. The Journal of the Acoustical Society of America 131, 1 (2012) 698–707. [CrossRef] [PubMed] [Google Scholar]
- J. Saneyoshi, H. Teramura, S. Yoshikawa: Feedback oscillations in reed woodwind and brasswind instruments. Acta Acustica United with Acustica 62 (1987) 194–210. [Google Scholar]
- F. Silva, J. Kergomard, C. Vergez, J. Gilbert: Interaction of reed and acoustic resonator in clarinetlike systems. The Journal of the Acoustical Society of America 124, 5 (2008) 3284–3295. [CrossRef] [PubMed] [Google Scholar]
- T.A. Wilson, G.S. Beavers: Operating modes of the clarinet. The Journal of the Acoustical Society of America 56, 2 (1974) 653–658. [CrossRef] [Google Scholar]
- S. Terrien, C. Vergez, B. Fabre: To what extent can a linear analysis predict the behaviour of a flute model? in International Symposium on Musical Acoustics, Le Mans, France, 7–12 July, 2014, pp. 171–176. [Google Scholar]
- J. Cullen, J. Gilbert, M. Campbell: Brass instruments: Linear stability analysis and experiments with an artificial mouth. Acta Acustica United with Acustica 86, 4 (2000) 704–724. [Google Scholar]
- I. Lopez, A. Hirschberg, A. van Hirtum, N. Ruty, X. Pelorson: Physical modeling of buzzing artificial lips: The effect of acoustical feedback. Acustica United with Acta Acustica 92, 6 (2006) 1047–1059. [Google Scholar]
- F. Silva, J. Kergomard, C. Vergez: Oscillation thresholds for “striking outwards” reeds coupled to a resonator. In: Proceedings of the International Symposium on Musical Acoustics (ISMA), September 2007, Barcelona, Spain. CD-ROM (7 p.). https://hal.archives-ouvertes.fr/hal-00150185. [Google Scholar]
- J. Gilbert, S. Maugeais, C. Vergez: Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation. Acta Acustica 4, 6 (2020) 27. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Silva, C. Vergez, P. Guillemain, J. Kergomard, V. Debut: MoReeSC: A framework for the simulation and analysis of sound production in reed and brass instruments. Acta Acustica United with Acustica 100, 1 (2014) 126–138. [CrossRef] [Google Scholar]
- E.J. Doedel, A.R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, C. Zhang: Auto-07p: Continuation and bifurcation software for ordinary differential equations. Available for download from http://indy.cs.concordia.ca/auto, 2007. [Google Scholar]
- M.S. Akay, A.D. Shaw, M.I. Friswell: Continuation analysis of a nonlinear rotor system. Nonlinear Dynamics 105, 1 (2021) 25–43. [CrossRef] [Google Scholar]
- B. Cochelin, C. Vergez: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal of Sound and Vibration 324, 1–2 (2009) 243–262. [Google Scholar]
- T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.-B. Doc, B. Cochelin: Influence of the “ghost reed” simplification on the bifurcation diagram of a saxophone model. Acta Acustica United with Acustica 105, 6 (2019) 1291–1294. [CrossRef] [Google Scholar]
- V. Fréour, L. Guillot, H. Masuda, S. Usa, E. Tominaga, Y. Tohgi, C. Vergez, B. Cochelin: Numerical continuation of a physical model of brass instruments: Application to trumpet comparisons. The Journal of the Acoustical Society of America 148, 2 (2020) 748–758. [CrossRef] [PubMed] [Google Scholar]
- L. Guillot, B. Cochelin, C. Vergez: A Taylor series-based continuation method for solutions of dynamical systems. Nonlinear Dynamics 98, 4 (2019) 2827–2845. [Google Scholar]
- S. Karkar, B. Cochelin, C. Vergez: A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities. Journal of Sound and Vibration 332, 4 (2013) 968–977. [CrossRef] [Google Scholar]
- M. Nakhla, J. Vlach: A piecewise harmonic balance technique for determination of periodic response of nonlinear systems. IEEE Transactions on Circuits and Systems 23, 2 (1976) 85–91. [Google Scholar]
- F. Ablitzer: Peak-picking identification technique for modal expansion of input impedance of brass instruments. Acta Acustica 5 (2021) 53. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Velut, C. Vergez, J. Gilbert, F. Silva: Numerical simulation of the production of pedal notes in brass instruments. In: ISMA 2014 – International Symposium on Musical Acoustics, Le Mans, France, 7–12 July, 2014. [Google Scholar]
- A. de Cheveigné, H. Kawahara: YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America 111, 4 (2002) 1917–1930. [CrossRef] [PubMed] [Google Scholar]
- C.A. Macaluso, J.-P. Dalmont: Trumpet with near-perfect harmonicity: Design and acoustic results. The Journal of the Acoustical Society of America 129, 1 (2011) 404–414. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.